Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stopping Molecules with a Centrifuge

A novel deceleration technique brings fast continuous beams of polyatomic polar molecules almost to a halt

Does the electron possess an electric dipole moment? Will it be possible to achieve perfect control over chemical reactions between polyatomic molecules, or can one envisage quantum simulations and quantum computation with cold polar molecules?

Fig. 1: On a fast rotating disc, an electric quadrupole guide forces the molecules to move towards the rotation axis. As the molecules have to fight against the centrifugal force on their way, they loose kinetic energy and are slowed down to almost a complete halt.
Graphic: MPQ, Quantum Dynamics Division

The fast-growing investigation of cold polar molecules holds promise for delivering answers to these long-standing questions that concern fundamental physics as well as future applications. Producing abundant samples of cold polyatomic molecules from thermal ensembles, however, is a formidable challenge. A key method for obtaining cold molecules is the deceleration of molecular beams.

This has been achieved so far only in the pulsed mode, with a very low duty cycle. Thus the hitherto-implemented techniques cannot make use of the intrinsically high flux delivered by the available continuous molecular sources. To utilize the full potential of such sources, a continuous deceleration is warranted. Towards this end, a team of scientists in the Quantum Dynamics Division of Professor Gerhard Rempe at the Max-Planck-Institute of Quantum Optics has now developed a versatile deceleration technique dubbed centrifuge decelerator, which makes possible for the first time the deceleration of continuous beams of polyatomic polar molecules (PRL, DOI: 10.1103/PhysRevLett.112.013001, 6 January 2014).

The stunning advances in atomic physics and quantum optics over the past three decades ensued to a great extent from the development of efficient laser cooling and deceleration techniques. Compared to atoms, molecules are more complex objects and possess a more involved internal-energy structure: in addition to the electronic states, molecules have also vibrational and rotational states. For this reason, the laser cooling and deceleration methods, which are the workhorses in atomic physics, are not applicable to molecules, in particular polyatomic ones.

A natural way to decelerate a molecule (as any other object) is to make it climb up a potential hill, thereby transforming its kinetic energy into a potential one. Such a hill can be provided through the interaction of a molecule with an external field, be it electric, magnetic or gravitational. For instance, the application of electric fields makes use of the dipole moment that a large number of molecules (unlike atoms) possess because of an uneven charge distribution within the molecule. The dipole moment interacts with the external electric fields, and by making the molecules move from a region with a weaker field to a region with a stronger field they lose kinetic energy. In a similar fashion magnetic molecules can be decelerated with external magnetic fields.

“The disadvantage of these two methods is that for most molecules of interest the typical height of electric or magnetic hills is of the order of 1 Kelvin, whereas molecules from our liquid-nitrogen-cooled source have initial kinetic energies of the order of 100 Kelvin”, Dr. Sotir Chervenkov, leader of the experiment, explains. “Hence, the molecules have to climb up a sequence of around hundred hills. This implicates that one has to apply this process many times in succession, which leads to operation in the pulsed regime.”

To circumvent this limitation, one has to provide a sufficiently high potential (~100 K) in order to decelerate molecules in one stretch. Such a high potential is provided by the gravitational field of the Earth, for instance. Simple calculations, however, show that for a molecule to be decelerated from around 200 metre per second down to a trappable velocity of around 20 metre per second it has to fly upwards in the gravitational field of the Earth for 2000 metres, which renders such an experiment impossible or at least very demanding. The alternative is to artificially create an analogue of a gravitational field in the laboratory.

“We are the first group worldwide which exploits this possibility”, points out Dr. Chervenkov. “Everyone who has been on a merry-go-round has experienced the outward force, which exists in a rotating frame. This force can be much larger than the gravitational force of the Earth, and is exploited in centrifuges for a multitude of biological, chemical, medical and industrial applications.” Xing Wu, a doctoral candidate who performed the first measure-ments, adds: “Now we employ a rotating frame for a conceptually different purpose, namely to decelerate a gas of neutral molecules from about 200 metre per second to almost a standstill.” Martin Zeppenfeld, who initially proposed the idea, further elucidates the deceleration mechanism: “First the molecules propagate around the periphery of the centrifuge in a stationary storage ring with a diameter of 40 cm composed of two static and two rotating electrodes. Then a rotating spiral-shaped electric quadrupole guide picks up the molecules almost at any point around the storage ring and whirls them to the rotation axis. Thus the centrifuge deceleration is a two-step process: the velocity of the molecules decreases first upon their transition from the laboratory into the rotating frame, and further, while propagating in the rotating guide, as they are forced to climb up a huge potential hill and are continuously slowed down, eventually reaching the rotation axis at close-to-zero velocity.”

The MPQ team demonstrated the capabilities and the universality of the new technique by deceleration of three species with different masses and a dipole moment of the order of 1.5 Debye, CH3F, CF3H, and CF3CCH. In their experiment the scientists vary both the rotation speed of the disc and the voltage at the quadrupole guide. For optimal conditions they achieved continuous output beams with intensities of several billion molecules per square-millimetre per second for molecules with kinetic energies below 1 Kelvin.

“Novel features of the centrifuge decelerator are its continuous operation, high beam intensity, applicability to a large set of molecules, and ease of operation. Therefore it has the potential to become an extremely valuable method in the cold-molecule research,” Professor Gerhard Rempe points out. “The universality of the centrifugal force might also enable one to slow down atoms that cannot be laser-cooled, and possibly even cold neutrons.”

Accumulation of centrifuge-decelerated molecules in an electric trap and further cooling them via the recently demonstrated technique of Sisyphus cooling developed in the same group at the MPQ might allow for a dramatic increase of the phase-space density for controlled collision experiments with polyatomic molecules and pave the way to achieving quantum degenerate regimes with polar molecules. [SC/OM]

Original publication:

S. Chervenkov, X. Wu, J. Bayerl, A. Rohlfes, T. Gantner, M. Zeppenfeld, and G. Rempe
Continuous Centrifuge Decelerator for Polar Molecules
Physical Review Letters, DOI: 10.1103/PhysRevLett.112.013001, 6 January 2014
Prof. Dr. Gerhard Rempe
Director at Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -701 /Fax: -311
Dr. Sotir Chervenkov
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -244 /Fax: -395
Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Graphene microphone outperforms traditional nickel and offers ultrasonic reach
27.11.2015 | Institute of Physics

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>