Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stevens researchers pioneer novel technique to make plasmonic nanogap arrays

07.09.2011
In the quest to exploit unique properties at the nanoscale, scientists at Stevens Institute of Technology have developed a novel technique for creating uniform arrays of metallic nanostructures.

A team of faculty and students in the Department of Physics and Engineering Physics, led by Dr. Stefan Strauf, appropriated methods from holographic lithography to demonstrate a new approach for scaling up the fabrication of plasmonic nanogap arrays while simultaneously reducing costs and infrastructure. A paper on the technique recently appeared in Nano Letters 11, 2715 (2011).

"Prof. Strauf is doing research at the forefront of physics," says Dr. Rainer Martini, Department Director for Physics and Engineering Physics. "His lab is producing research breakthroughs with impact well beyond his own field as well as providing excellent learning and publishing opportunities for graduate and undergraduate students."

Plasmonic nanogap arrays are essentially uniformly placed metallic nanostructures which feature a tiny air gap between neighbors. By creating strongly confined electrical fields under optical illumination, these tiny air gaps allow scientists to use the arrays in a variety of applications, particularly in the miniaturization of photonic circuits and ultrasensitive sensing. Such sensors could be used to detect the presence of specific proteins or chemicals down to the level of single molecules, or employed in high-resolution microscopy. Nanophotonic circuits, able to transmit huge amounts of information, are considered crucial to bring about the exaflop processing era and a new generation in computing power.

Established fabrication techniques for nanogap arrays have focused on serial methods, which are time-consuming, have a low throughput, and are consequently expensive. Holographic lithography (HL), an optical approach that takes advantage of interference patterns of laser beams to create periodic patterns, had been previously demonstrated to create sub wavelength features. Dr. Strauf's team advanced the HL methodology by using four-beam interference and the concept of a compound lattice to create tunable twin motive shapes into a polymer template, resulting in metallic air gaps down to 7 nm, seventy times smaller than the wavelengths of the blue laser light utilized to write the features.

The Stevens scientists extended the utility of HL to create gaps with results comparable to laborious serial fabrication techniques such as electron beam lithography or focused ion beam milling. Besides being a simpler and more cost-effective production method, their technique does not require a clean room and currently achieves 90% uniformity in the array pattern. Therefore, these innovations provide the foundation for making high-quality, large-scale arrays at a greater speed and lower cost than previously realizable.

"This research project provided me with an opportunity to become an expert with the HL technique," says Xi Zhang, the first author of the Nano Letters article and a PhD candidate. Xi and her fellow students are now measuring the surface enhanced Raman scattering (SERS) effects that result from these arrays and continue to improve the uniformity of the arrays during fabrication. "We just got some excellent results from first SERS experiment, and certainly there are more papers to follow up," she says.

Dr. Strauf is Director of the NanoPhotonics Laboratory (NPL) at Stevens, where he oversees cutting-edge research in the fields of solid-state nanophotonics and nanoelectronics. Research at the lab includes the development of fabrication methods for nanoscale materials and quantum device applications. Recent NPL projects have resulted in papers published on quantum dots and graphene. The lab has received project funding from the Air Force Office of Scientific Research and two National Science Foundation instrumentation grants. Dr. Strauf is also the recipient of the prestigious NSF CAREER Award.

About the Department of Physics and Engineering Physics

The mission of the Department of Physics and Engineering Physics at Stevens Institute of Technology is to provide a world-class scientific research and academic environment that fosters creation of new knowledge while educating and inspiring students at all levels as well as motivating faculty and support staff, to acquire, use, and advance the competencies needed to lead in scientific discovery and in the creation, application and management of technology to solve complex problems, invent new processes and products, and build new enterprises. The program has a strong focus on interdisciplinary projects and effectively combines classroom instruction with hands-on experience in state-of-the-art research laboratories. The Department has broad research programs, with special emphasis on the fields of atomic, molecular, and optical physics (AMO), photonics technology, quantum optics, and quantum information science. Learn more: www.stevens.edu/ses/physics

Christine del Rosario | EurekAlert!
Further information:
http://www.stevens.edu/ses/physics

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>