Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stevens researchers pioneer novel technique to make plasmonic nanogap arrays

07.09.2011
In the quest to exploit unique properties at the nanoscale, scientists at Stevens Institute of Technology have developed a novel technique for creating uniform arrays of metallic nanostructures.

A team of faculty and students in the Department of Physics and Engineering Physics, led by Dr. Stefan Strauf, appropriated methods from holographic lithography to demonstrate a new approach for scaling up the fabrication of plasmonic nanogap arrays while simultaneously reducing costs and infrastructure. A paper on the technique recently appeared in Nano Letters 11, 2715 (2011).

"Prof. Strauf is doing research at the forefront of physics," says Dr. Rainer Martini, Department Director for Physics and Engineering Physics. "His lab is producing research breakthroughs with impact well beyond his own field as well as providing excellent learning and publishing opportunities for graduate and undergraduate students."

Plasmonic nanogap arrays are essentially uniformly placed metallic nanostructures which feature a tiny air gap between neighbors. By creating strongly confined electrical fields under optical illumination, these tiny air gaps allow scientists to use the arrays in a variety of applications, particularly in the miniaturization of photonic circuits and ultrasensitive sensing. Such sensors could be used to detect the presence of specific proteins or chemicals down to the level of single molecules, or employed in high-resolution microscopy. Nanophotonic circuits, able to transmit huge amounts of information, are considered crucial to bring about the exaflop processing era and a new generation in computing power.

Established fabrication techniques for nanogap arrays have focused on serial methods, which are time-consuming, have a low throughput, and are consequently expensive. Holographic lithography (HL), an optical approach that takes advantage of interference patterns of laser beams to create periodic patterns, had been previously demonstrated to create sub wavelength features. Dr. Strauf's team advanced the HL methodology by using four-beam interference and the concept of a compound lattice to create tunable twin motive shapes into a polymer template, resulting in metallic air gaps down to 7 nm, seventy times smaller than the wavelengths of the blue laser light utilized to write the features.

The Stevens scientists extended the utility of HL to create gaps with results comparable to laborious serial fabrication techniques such as electron beam lithography or focused ion beam milling. Besides being a simpler and more cost-effective production method, their technique does not require a clean room and currently achieves 90% uniformity in the array pattern. Therefore, these innovations provide the foundation for making high-quality, large-scale arrays at a greater speed and lower cost than previously realizable.

"This research project provided me with an opportunity to become an expert with the HL technique," says Xi Zhang, the first author of the Nano Letters article and a PhD candidate. Xi and her fellow students are now measuring the surface enhanced Raman scattering (SERS) effects that result from these arrays and continue to improve the uniformity of the arrays during fabrication. "We just got some excellent results from first SERS experiment, and certainly there are more papers to follow up," she says.

Dr. Strauf is Director of the NanoPhotonics Laboratory (NPL) at Stevens, where he oversees cutting-edge research in the fields of solid-state nanophotonics and nanoelectronics. Research at the lab includes the development of fabrication methods for nanoscale materials and quantum device applications. Recent NPL projects have resulted in papers published on quantum dots and graphene. The lab has received project funding from the Air Force Office of Scientific Research and two National Science Foundation instrumentation grants. Dr. Strauf is also the recipient of the prestigious NSF CAREER Award.

About the Department of Physics and Engineering Physics

The mission of the Department of Physics and Engineering Physics at Stevens Institute of Technology is to provide a world-class scientific research and academic environment that fosters creation of new knowledge while educating and inspiring students at all levels as well as motivating faculty and support staff, to acquire, use, and advance the competencies needed to lead in scientific discovery and in the creation, application and management of technology to solve complex problems, invent new processes and products, and build new enterprises. The program has a strong focus on interdisciplinary projects and effectively combines classroom instruction with hands-on experience in state-of-the-art research laboratories. The Department has broad research programs, with special emphasis on the fields of atomic, molecular, and optical physics (AMO), photonics technology, quantum optics, and quantum information science. Learn more: www.stevens.edu/ses/physics

Christine del Rosario | EurekAlert!
Further information:
http://www.stevens.edu/ses/physics

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>