Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stevens faculty release study on free-space optical communication in Optics Express

19.03.2009
Paper shows experimental evidence of a unique atmospheric effect

Three members of the faculty at Stevens Institute of Technology recently collaborated on a paper focusing on free-space optical communication, which appears in the latest issue of Optics Express, a premiere optics journal currently in circulation.

Dr. Paul Corrigan, a research associate at the MIRTHE Foundation and a Visiting Assistant Professor at Stevens, working along with Stevens Associate Professor Rainer Martini and Professor Edward Whittaker, spent months researching and writing the study as part of their free-space optics test-bed established in the Physics Department at Stevens.

Free-space optical communication is line-of-sight laser communication through the air. To date, the primary barrier to commercial uptake of this technology has been the limitations imposed by adverse weather, particularly fog, which restricts conventional near-infrared laser systems throughput in the air. The quantum cascade laser (QCL) provides key optical emission wavelengths in the mid-infrared that are thought to overcome many of these problems and thereby increase communication robustness, data security and deployable range.

However, in the optics community there has been a debate as to whether a mid-infrared source really is a better physical layer solution than near-infrared light. Much of the debate hinged on the shortage of good data that compares systems side-by-side in a fair way.

At Stevens, the free-space optics group created a world leading multi-wavelength test bed with "off-the-shelf" telecom systems and QCLs. They found that in adverse conditions such as haze, fog and rain, a mid-infrared QCL system truly is stronger, delivering up to 300% greater throughput than conventional systems.

What makes the paper special is that the professors also present the first experimental evidence – to their knowledge – of a unique atmospheric effect called "scavenging," where the composition of fog changes with respect to QCL light in a previously unmeasured way due to the presence of rain.

"The application of this study extends not only to industrial development of free-space optical systems for fast high bandwidth deployment, but also to military applications in targeting, as well as possibly to understanding the formation and lifetime of fog, something that has not been very well understood up to now," said Dr. Corrigan.

Patrick A. Berzinski | EurekAlert!
Further information:
http://www.stevens.edu
http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-6-4355

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>