Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

STEREO, SOHO spacecraft catch comet diving into sun

25.05.2010
Solar physicists at the University of California, Berkeley, have captured for the first time the collision of a comet with the sun.

Using instruments aboard NASA's twin STEREO spacecraft, four post-doctoral fellows at UC Berkeley's Space Sciences Laboratory were able to track the comet as it approached the sun and estimate an approximate time and place of impact.

STEREO (Solar TErrestrial RElations Observatory), launched in 2006, consists of identical spacecraft orbiting the sun, one ahead of Earth and one behind Earth, providing a stereo view of the sun.

The researchers then looked at data from the ground-based Mauna Loa Solar Observatory in Hawaii, and found images in the predicted spot of what appears to be a comet approaching the edge of the sun from behind the solar disk.

"We believe this is the first time a comet has been tracked in 3-D space this low down in the solar corona," said Claire Raftery, a post-doctoral fellow newly arrived at UC Berkeley from Dublin's Trinity College.

The team will present its data and images during a 5:30-6:30 p.m. poster session on Monday, May 24, at the Miami, Fla., meeting of the American Astronomical Society.

Sungrazing comets, comprised of dust, rock and ice, are seldom tracked close to the sun because their brightness is overwhelmed by the solar disk. This comet apparently survived the heat of the corona and disappeared in the chromosphere, evaporating in the 100,000-degree (Kelvin) heat.

Raftery and her colleagues, Juan Carlos Martinez-Oliveros, Samuel Krucker and Pascal Saint-Hilaire, concluded that the comet was probably one of the Kreutz family of comets, a swarm of Trojan or Greek comets ejected from their orbit in 2004 by Jupiter, and that it made its first and only loop around the sun. The swarm probably resulted from the disintegration of a larger comet.

Martinez-Oliveros' attention was first drawn to the comet after seeing it mentioned in a summary of March 12, 2010, observations by STEREO and by SOHO, the Solar and Heliospheric Observatory. The comet's long, bright tail of dust and ions tagged it as a sungrazing comet seen often by solar astronomers and observatories such as STEREO.

Assuming it was a going to loop around the sun, the researchers decided to see whether the STEREO data were good enough to let them calculate its trajectory.

In fact, the data were good enough to chart the comet's approach for two days before impact.

With an estimate of the impact zone within a circle about 1,000 kilometers in diameter, they searched online data from the Mauna Loa Solar Observatory to determine if they could see the comet next to the sun's edge in the ultraviolet region of the spectrum.

They found a short track, lasting about six minutes, just a few thousand kilometers above the sun's surface in the million-degree corona and 100,000-degree chromosphere.

Based on the comet's relatively short tail, about 3 million kilometers in length, the researchers believe that the comet contained heavier elements that do not evaporate readily. This would also explain how it penetrated so deeply into the chromosphere, surviving the strong solar wind as well as the extreme temperatures, before evaporating.

For their study, the team used the two coronagraphs on STEREO A and B and multiple instruments on SOHO, "demonstrat(ing) the importance of multi-view observations of non solar phenomena," they wrote in their poster.

All members of the team study explosive events on the sun, such as coronal mass ejections, and the hot ionized plasmas that they throw into space. The researchers' detour into cometary physics was purely accidental, they said.

"It was supposed to be an exercise, but it took over our lives," Raftery said.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>