Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

STEREO, SOHO spacecraft catch comet diving into sun

25.05.2010
Solar physicists at the University of California, Berkeley, have captured for the first time the collision of a comet with the sun.

Using instruments aboard NASA's twin STEREO spacecraft, four post-doctoral fellows at UC Berkeley's Space Sciences Laboratory were able to track the comet as it approached the sun and estimate an approximate time and place of impact.

STEREO (Solar TErrestrial RElations Observatory), launched in 2006, consists of identical spacecraft orbiting the sun, one ahead of Earth and one behind Earth, providing a stereo view of the sun.

The researchers then looked at data from the ground-based Mauna Loa Solar Observatory in Hawaii, and found images in the predicted spot of what appears to be a comet approaching the edge of the sun from behind the solar disk.

"We believe this is the first time a comet has been tracked in 3-D space this low down in the solar corona," said Claire Raftery, a post-doctoral fellow newly arrived at UC Berkeley from Dublin's Trinity College.

The team will present its data and images during a 5:30-6:30 p.m. poster session on Monday, May 24, at the Miami, Fla., meeting of the American Astronomical Society.

Sungrazing comets, comprised of dust, rock and ice, are seldom tracked close to the sun because their brightness is overwhelmed by the solar disk. This comet apparently survived the heat of the corona and disappeared in the chromosphere, evaporating in the 100,000-degree (Kelvin) heat.

Raftery and her colleagues, Juan Carlos Martinez-Oliveros, Samuel Krucker and Pascal Saint-Hilaire, concluded that the comet was probably one of the Kreutz family of comets, a swarm of Trojan or Greek comets ejected from their orbit in 2004 by Jupiter, and that it made its first and only loop around the sun. The swarm probably resulted from the disintegration of a larger comet.

Martinez-Oliveros' attention was first drawn to the comet after seeing it mentioned in a summary of March 12, 2010, observations by STEREO and by SOHO, the Solar and Heliospheric Observatory. The comet's long, bright tail of dust and ions tagged it as a sungrazing comet seen often by solar astronomers and observatories such as STEREO.

Assuming it was a going to loop around the sun, the researchers decided to see whether the STEREO data were good enough to let them calculate its trajectory.

In fact, the data were good enough to chart the comet's approach for two days before impact.

With an estimate of the impact zone within a circle about 1,000 kilometers in diameter, they searched online data from the Mauna Loa Solar Observatory to determine if they could see the comet next to the sun's edge in the ultraviolet region of the spectrum.

They found a short track, lasting about six minutes, just a few thousand kilometers above the sun's surface in the million-degree corona and 100,000-degree chromosphere.

Based on the comet's relatively short tail, about 3 million kilometers in length, the researchers believe that the comet contained heavier elements that do not evaporate readily. This would also explain how it penetrated so deeply into the chromosphere, surviving the strong solar wind as well as the extreme temperatures, before evaporating.

For their study, the team used the two coronagraphs on STEREO A and B and multiple instruments on SOHO, "demonstrat(ing) the importance of multi-view observations of non solar phenomena," they wrote in their poster.

All members of the team study explosive events on the sun, such as coronal mass ejections, and the hot ionized plasmas that they throw into space. The researchers' detour into cometary physics was purely accidental, they said.

"It was supposed to be an exercise, but it took over our lives," Raftery said.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>