Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another step towards quantum computing: coupling of nitrogen centers in a diamond

01.03.2010
Nature Physics: coupling of nitrogen centers in a diamond
Research group develops quantum register at room-temperature

Another decisive step forward in the development of quantum computers has been successful. For the first time ever, researchers at the Ruhr University in Bochum, the Universities of Stuttgart and Austin /Texas (USA) have accomplished to place two nitrogen atoms in a distance of only few nanometers, so that laser excitation will be capable of creating a quantum mechanical coupling.

The key to the solution: it works with high precision, reliably, and even at room-temperature only in a diamond. The RUBION particle accelerator at the Ruhr University disposes of the ideal instrumentation for this ion implantation in diamonds and by now makes implantations available to other universities like Harvard or to the MIT. "Initially numerous groups focused on silicon," says Dr. Jan Meijer at Bochum's RUBION, "but these researches demonstrated that diamonds are particularly well suited for coupled quantum circuits." The scientists reported their results in the noted journal "Nature Physics".

Why diamonds?

The research results confirm a hypothesis on the special properties of diamonds which has been put forward by the Stuttgart scientists Prof. Dr. Jörg Wrachtrup and Dr. Fedor Jelezko several years ago: color centers or NV centers are immobile in the surrounding carbon lattice - whereby N stands for nitrogen and V for a vacancy. Since there is actually no "diffusion" inside a diamond, the atoms won't migrate back and forth. When targeted by a laser, the two nitrogen centers will react and a manipulable superposition of their spin states - the rotational movement of electrons - results. These highly complex studies were conducted in Stuttgart.

Simultaneous multiple states

Spin up - spin down: these are primarily the two states the coupled atoms can assume, comparable with "0" and "1" in a computer. However, the processes in this quantum "circuit" are much more sophisticated. "Microscopical and quantum mechanical systems prepared this way differ totally from our everyday experience and can take on, for example, several states at one and the same time," says Jan Meijer. "You can almost compare them with two conventional PC memory devices coupled in such a manner that they interfere with each other."

Quantum computer: the first step is made

That the coupling of the atoms in the diamond's color center even works at room-temperature is the crucial requisite for building a quantum computer. Meijer: "Basically it is imaginable and possible to create several of these NV centers deliberately by means of ion implantation, couple them together in a scalable fashion and have a classical computer control it all." The number of couplings is now to be increased step by step. "This is a great challenge," says Meijer, "because the greater the number of couplings, the faster the system will fall apart."

Unlimited possibilities

The possibilities are - theoretically - immeasurable: if we were to connect only 100 of these NV centers with each other, we would get two to the power of 100 coupled memory cells. "Physically, this is considerably more than we need to store the entire knowledge of humankind," as Dr. Meijer explains the dimensions. A totally new computer technology can be built by applying the laws of quantum mechanics - with it, we could, for example, calculate the properties of complex biological molecules or crack codes within a fraction of a second.

Title record

Neumann et al.: Quantum register based on coupled electron spins in a room-temperature solid. In: Nature Physics. Published online: 28 February 2010, doi: 10.1038/NPHYS1536

Further information

PD Dr. Jan Meijer, RUBION, Ruhr University, Bochum, Tel. 0234/32-26612, Email: jan.meijer@rub.de

Prof. Dr. Jörg Wrachtrup, University of Stuttgart, Third Institute of Physics, Tel. 0711/685-65278, Email: wrachtrup@physik.uni-stuttgart.de

Editorial: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>