Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Another step towards quantum computing: coupling of nitrogen centers in a diamond

Nature Physics: coupling of nitrogen centers in a diamond
Research group develops quantum register at room-temperature

Another decisive step forward in the development of quantum computers has been successful. For the first time ever, researchers at the Ruhr University in Bochum, the Universities of Stuttgart and Austin /Texas (USA) have accomplished to place two nitrogen atoms in a distance of only few nanometers, so that laser excitation will be capable of creating a quantum mechanical coupling.

The key to the solution: it works with high precision, reliably, and even at room-temperature only in a diamond. The RUBION particle accelerator at the Ruhr University disposes of the ideal instrumentation for this ion implantation in diamonds and by now makes implantations available to other universities like Harvard or to the MIT. "Initially numerous groups focused on silicon," says Dr. Jan Meijer at Bochum's RUBION, "but these researches demonstrated that diamonds are particularly well suited for coupled quantum circuits." The scientists reported their results in the noted journal "Nature Physics".

Why diamonds?

The research results confirm a hypothesis on the special properties of diamonds which has been put forward by the Stuttgart scientists Prof. Dr. Jörg Wrachtrup and Dr. Fedor Jelezko several years ago: color centers or NV centers are immobile in the surrounding carbon lattice - whereby N stands for nitrogen and V for a vacancy. Since there is actually no "diffusion" inside a diamond, the atoms won't migrate back and forth. When targeted by a laser, the two nitrogen centers will react and a manipulable superposition of their spin states - the rotational movement of electrons - results. These highly complex studies were conducted in Stuttgart.

Simultaneous multiple states

Spin up - spin down: these are primarily the two states the coupled atoms can assume, comparable with "0" and "1" in a computer. However, the processes in this quantum "circuit" are much more sophisticated. "Microscopical and quantum mechanical systems prepared this way differ totally from our everyday experience and can take on, for example, several states at one and the same time," says Jan Meijer. "You can almost compare them with two conventional PC memory devices coupled in such a manner that they interfere with each other."

Quantum computer: the first step is made

That the coupling of the atoms in the diamond's color center even works at room-temperature is the crucial requisite for building a quantum computer. Meijer: "Basically it is imaginable and possible to create several of these NV centers deliberately by means of ion implantation, couple them together in a scalable fashion and have a classical computer control it all." The number of couplings is now to be increased step by step. "This is a great challenge," says Meijer, "because the greater the number of couplings, the faster the system will fall apart."

Unlimited possibilities

The possibilities are - theoretically - immeasurable: if we were to connect only 100 of these NV centers with each other, we would get two to the power of 100 coupled memory cells. "Physically, this is considerably more than we need to store the entire knowledge of humankind," as Dr. Meijer explains the dimensions. A totally new computer technology can be built by applying the laws of quantum mechanics - with it, we could, for example, calculate the properties of complex biological molecules or crack codes within a fraction of a second.

Title record

Neumann et al.: Quantum register based on coupled electron spins in a room-temperature solid. In: Nature Physics. Published online: 28 February 2010, doi: 10.1038/NPHYS1536

Further information

PD Dr. Jan Meijer, RUBION, Ruhr University, Bochum, Tel. 0234/32-26612, Email:

Prof. Dr. Jörg Wrachtrup, University of Stuttgart, Third Institute of Physics, Tel. 0711/685-65278, Email:

Editorial: Jens Wylkop

Dr. Josef König | idw
Further information:

More articles from Physics and Astronomy:

nachricht Scientists invented method of catching bacteria with 'photonic hook'
20.03.2018 | ITMO University

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>