Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Steering the flow of light


Tiny particles with varied shapes scatter light in useful and unusual ways.

A study into the way nanoparticles scatter light could lead to simpler and smaller optical nanoantennas with improved directivity and efficiency — crucial components for the next generation of advanced photonic devices[1].

The strength and direction of light scattering can be controlled by carefully selecting a nanostructure’s shape and refractive index. © A*STAR Data Storage Institute

Boris Luk’yanchuk and co-workers from the Agency for Science, Technology and Research (A*STAR) Data Storage Institute, Singapore, together with a collaborator in St. Petersburg University, Russia, undertook a detailed numerical investigation of the light scattering characteristics of dielectric nanoparticles of different shapes with high refractive indexes (larger than 2). They focused particularly on nanoscale spheres and spheroids.

By carefully selecting the nanoparticle’s shape and refractive index, the team discovered they could use the interference between the particle’s electric and magnetic dipole resonances to control and optimize the strength and direction of its light scattering.

For example, they found that for a spheroid particle with a refractive index of 3.5, scattering in the forward direction can be maximized if the spheroid’s major axis is just over twice the length of its minor axis.

Steering the flow of light by manipulating the nanoparticle’s aspect ratio is potentially useful in many applications, for example to maximize the light captured by a solar cell or to make artificially-engineered metasurfaces that can cause light to flow in interesting and unusual ways.

“Dielectric particles with optimized shapes which behave as very efficient directional antennas can be used in sensing devices, transmission lines, metasurfaces with numerous uses and in many other devices such as negative refractive index lenses, optical cloaking devices or nanolasers,” explained Luk’yanchuk, the lead researcher in the study.

“The fascinating properties of dielectric materials with high refractive indexes are related to their ability to have both electric and magnetic dipoles. It makes it possible to produce different interference phenomena in their scattering, like Fano resonances for example. We are trying to use these effects to produce different types of nanoscale devices and metasurfaces.”

According to Luk’yanchuk, the physics of this scattering is valid and scalable across the electromagnetic spectrum and thus their approach could be applied not only at optical and infrared frequencies, but at microwave frequencies as well, provided that suitable transparent particles with a sufficiently high refractive index are used.

“At optical frequencies, for example, there are many suitable materials like titanium dioxide, silicon, germanium, gallium arsenide and other group IV and III-V semiconductors,” commented Luk’yanchuk. “The possible limitation would be frequencies higher than the visible range, like the ultraviolet, where no high-index transparent dielectrics are readily available.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute


[1] Luk’yanchuk, B. S., Voshchinnikov, N. V., Paniagua-Dominguez, R. & Kuznetsov, A. I. Optimum forward light scattering by spherical and spheroid dielectric nanoparticles with high refractive index, ACS Photonics 2, 993–999 (2015).

Associated links
Original article from A*STAR Research

A*STAR Research | Research SEA
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>