Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steering the flow of light

11.12.2015

Tiny particles with varied shapes scatter light in useful and unusual ways.

A study into the way nanoparticles scatter light could lead to simpler and smaller optical nanoantennas with improved directivity and efficiency — crucial components for the next generation of advanced photonic devices[1].


The strength and direction of light scattering can be controlled by carefully selecting a nanostructure’s shape and refractive index. © A*STAR Data Storage Institute

Boris Luk’yanchuk and co-workers from the Agency for Science, Technology and Research (A*STAR) Data Storage Institute, Singapore, together with a collaborator in St. Petersburg University, Russia, undertook a detailed numerical investigation of the light scattering characteristics of dielectric nanoparticles of different shapes with high refractive indexes (larger than 2). They focused particularly on nanoscale spheres and spheroids.

By carefully selecting the nanoparticle’s shape and refractive index, the team discovered they could use the interference between the particle’s electric and magnetic dipole resonances to control and optimize the strength and direction of its light scattering.

For example, they found that for a spheroid particle with a refractive index of 3.5, scattering in the forward direction can be maximized if the spheroid’s major axis is just over twice the length of its minor axis.

Steering the flow of light by manipulating the nanoparticle’s aspect ratio is potentially useful in many applications, for example to maximize the light captured by a solar cell or to make artificially-engineered metasurfaces that can cause light to flow in interesting and unusual ways.

“Dielectric particles with optimized shapes which behave as very efficient directional antennas can be used in sensing devices, transmission lines, metasurfaces with numerous uses and in many other devices such as negative refractive index lenses, optical cloaking devices or nanolasers,” explained Luk’yanchuk, the lead researcher in the study.

“The fascinating properties of dielectric materials with high refractive indexes are related to their ability to have both electric and magnetic dipoles. It makes it possible to produce different interference phenomena in their scattering, like Fano resonances for example. We are trying to use these effects to produce different types of nanoscale devices and metasurfaces.”

According to Luk’yanchuk, the physics of this scattering is valid and scalable across the electromagnetic spectrum and thus their approach could be applied not only at optical and infrared frequencies, but at microwave frequencies as well, provided that suitable transparent particles with a sufficiently high refractive index are used.

“At optical frequencies, for example, there are many suitable materials like titanium dioxide, silicon, germanium, gallium arsenide and other group IV and III-V semiconductors,” commented Luk’yanchuk. “The possible limitation would be frequencies higher than the visible range, like the ultraviolet, where no high-index transparent dielectrics are readily available.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Reference

[1] Luk’yanchuk, B. S., Voshchinnikov, N. V., Paniagua-Dominguez, R. & Kuznetsov, A. I. Optimum forward light scattering by spherical and spheroid dielectric nanoparticles with high refractive index, ACS Photonics 2, 993–999 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>