Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Stars, Galaxies Formed More Rapidly Than Expected

07.09.2012
Analysis of data from the National Science Foundation’s South Pole Telescope, for the first time, more precisely defines the period of cosmological evolution when the first stars and galaxies formed and gradually illuminated the universe. The data indicate that this period, called the epoch of reionization, was shorter than theorists speculated — and that it ended early.
“We find that the epoch of reionization lasted less than 500 million years and began when the universe was at least 250 million years old,” said Oliver Zahn, a postdoctoral fellow at the Berkeley Center for Cosmological Physics at the University of California, Berkeley, who led the study. “Before this measurement, scientists believed that reionization lasted 750 million years or longer, and had no evidence as to when reionization began.”

The findings by Zahn, his colleagues at UChicago’s Kavli Institute for Cosmological Physics and elsewhere have been published in a pair of papers appearing in the Sept. 1, 2012 issue of the Astrophysical Journal. Their latest results are based on a new analysis that combines measurements taken by the South Pole Telescope at three frequencies, and extends these measurements to a larger area covering approximately 2 percent of the sky. The 10-meter South Pole Telescope operates at millimeter wavelengths to make high-resolution images of the cosmic microwave background (CMB), the light left over from the big bang.

“Studying the epoch of reionization is important because it represents one of the few ways by which we can study the first stars and galaxies,” said study co-author John Carlstrom, the S. Chandrasekhar Distinguished Service Professor in Astronomy & Astrophysics.
Before the first stars formed, most matter in the universe took the form of neutral hydrogen atoms. The radiation from the first stars transformed the neutral gas into an electron-proton plasma. Observations with the Wilkinson Microwave Anisotropy Probe satellite of polarized signals in the CMB indicate that this epoch occurred nearly 13 billion years ago, but these observations give no indication of when the epoch began or how long it lasted.

The first stars that formed were probably 30 to 300 times more massive than the sun and millions of times as bright, burning for only a few million years before exploding. The energetic ultraviolet light from these stars was capable of splitting hydrogen atoms back into electrons and protons, thus ionizing them.

Scientists believe that during reionization, the first galaxies to form ionized “bubbles” in the neutral gas surrounding them. Electrons in these bubbles would scatter with light particles from the cosmic microwave background. This would create small hot and cold spots in the CMB depending on whether a bubble is moving toward or away from Earth. A longer epoch of reionization would create more bubbles, leading to a larger signal in the CMB.

The epoch’s short duration indicates that reionization was more explosive than scientists had previously thought. It suggests that massive galaxies played a key role in reionization, because smaller galaxies would have formed much earlier. Rapid reionization also argues against many proposed astrophysical phenomena that would slow the process.

This is only the beginning of what astronomers expect to learn about reionization from the South Pole Telescope. The current results are based on only the first third of the telescope’s full survey. Additional work is under way to combine South Pole Telescope maps with ones made by the Herschel satellite to further increase sensitivity to the reionization signal.

“We expect to measure the duration of reionization to within 50 million years with the current survey,” said study co-author Christian Reichardt, a Berkeley astrophysicist. “With planned upgrades to the instrument, we hope to improve this even further in the next five years.”

The 280-ton South Pole Telescope stands 75 feet tall and is the largest astronomical telescope ever built in Antarctica’s clear, dry air. Sited at the National Science Foundation’s Amundsen-Scott South Pole station at the geographic South Pole, it stands at an elevation of 9,300 feet on the polar plateau. Because of its location at the Earth’s axis, it can conduct long-term observations of a single patch of sky.

UChicago leads the South Pole Telescope collaboration, which includes research groups from Argonne National Laboratory, Cardiff University, Case Western Reserve University, Harvard University, Ludwig-Maximilians-Universitat, Smithsonian Astrophysical Observatory, McGill University, University of California at Berkeley, University of California at Davis, University of Colorado at Boulder, University of Michigan and individual scientists at several other institutions.

The South Pole Telescope is primarily funded by the NSF’s Office of Polar Programs. Partial support also is provided by the NSF-funded Physics Frontier Center of UChicago’s Kavli Institute for Cosmological Physics, the Kavli Foundation, and the Gordon and Betty Moore Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>