Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At Least One in Six Stars Has an Earth-sized Planet

08.01.2013
The quest for a twin Earth is heating up. Using NASA's Kepler spacecraft, astronomers are beginning to find Earth-sized planets orbiting distant stars.
A new analysis of Kepler data shows that about 17 percent of stars have an Earth-sized planet in an orbit closer than Mercury. Since the Milky Way has about 100 billion stars, there are at least 17 billion Earth-sized worlds out there.

Francois Fressin, of the Harvard-Smithsonian Center for Astrophysics (CfA), presented the analysis today in a press conference at a meeting of the American Astronomical Society in Long Beach, Calif. A paper detailing the research has been accepted for publication in The Astrophysical Journal.

Kepler detects planetary candidates using the transit method, watching for a planet to cross its star and create a mini-eclipse that dims the star slightly. The first 16 months of the survey identified about 2,400 candidates. Astronomers then asked, how many of those signals are real, and how many planets did Kepler miss?

By simulating the Kepler survey, Fressin and his colleagues were able to correct both the impurity and the incompleteness of this list of candidates to recover the true occurrence of planets orbiting other stars, down to the size of Earth.

"There is a list of astrophysical configurations that can mimic planet signals, but altogether, they can only account for one-tenth of the huge number of Kepler candidates. All the other signals are bona-fide planets," says Fressin.

Most sun-like stars have planets
Altogether, the researchers found that 50 percent of stars have a planet of Earth-size or larger in a close orbit. By adding larger planets, which have been detected in wider orbits up to the orbital distance of the Earth, this number reaches 70 percent.

Extrapolating from Kepler's currently ongoing observations and results from other detection techniques, it looks like practically all Sun-like stars have planets.

The team then grouped planets into five different sizes. They found that 17 percent of stars have a planet 0.8 - 1.25 times the size of Earth in an orbit of 85 days or less. About one-fourth of stars have a super-Earth (1.25 - 2 times the size of Earth) in an orbit of 150 days or less. (Larger planets can be detected at greater distances more easily.) The same fraction of stars has a mini-Neptune (2 - 4 times Earth) in orbits up to 250 days long.

Larger planets are much less common. Only about 3 percent of stars have a large Neptune (4 - 6 times Earth), and only 5 percent of stars have a gas giant (6 - 22 times Earth) in an orbit of 400 days or less.

Smaller planets aren't picky
The researchers also asked whether certain sizes of planets are more or less common around certain types of stars. They found that for every planet size except gas giants, the type of star doesn't matter. Neptunes are found just as frequently around red dwarfs as they are around sun-like stars. The same is true for smaller worlds. This contradicts previous findings.

"Earths and super-Earths aren't picky. We're finding them in all kinds of neighborhoods," says co-author Guillermo Torres of the CfA.

Planets closer to their stars are easier to find because they transit more frequently. As more data are gathered, planets in larger orbits will come to light. In particular, Kepler's extended mission should allow it to spot Earth-sized planets at greater distances, including Earth-like orbits in the habitable zone.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht A New Litmus Test for Chaos?
29.07.2015 | American Institute of Physics (AIP)

nachricht First detection of lithium from an exploding star
29.07.2015 | ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>