Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stars 2.0 – From the first generation of stars to the second


Göttingen scientists model the formation of the oldest known star in the Milky Way

Scientists from the Universities of Göttingen and Copenhagen have modelled the formation of the oldest known star in the Milky Way using high-resolution computer simulations.

Density, temperature, and CII projections along the y-axis at a scale of 1 pc, for three different metallicities.

Photo: University of Göttingen

Using the star’s abundance patterns, the scientists performed cosmological simulations on a supercomputer of the North-German Supercomputing Alliance which included the dynamics of gas and dark matter as well as the chemical evolution.

From this simulation, the scientists expect to obtain an improved understanding of the transition from the first to the second generation of stars in the Universe. The results of their study were published in the Astrophysical Journal Letters.

The stars of the first generation were formed out of a primordial gas which consisted only of hydrogen and helium. Their mass ranged from ten to five hundred times the mass of our Sun. Nuclear processes in the interior of these stars created heavy elements like iron, silicon, carbon, and oxygen.

When the stars died during the first supernova explosions, the heavy elements were ejected and formed the stars of the second generation.

“Our simulations indicate that the gas efficiently cools during the process,” explains the leader of the study, Dr. Stefano Bovino from Göttingen University’s Institute for Astrophysics. “Such conditions favor the formation of low-mass stars.” The presence of heavy elements provides additional mechanisms for the gas to cool. It is therefore very important for the scientists to follow and model their chemical evolution.

The scientists chose the oldest known star of the Milky Way, called SMSS J031300.-36-670839.3 and estimated to be roughly 13.6 billion years old, because its abundance patterns were previously shown to be consistent with one single low-energy supernova.

“It seems very likely that this star is indeed one of the very first stars that formed out of the metal-enriched gas,” says Göttingen University’s Prof. Dr. Dominik Schleicher. “The chemical conditions reflect those right after the first supernova explosion.”

While SMSS J031300.-36-670839.3 has only a tiny amount of heavy elements, it has a relatively higher carbon abundance. It in fact represents an entire class with similar properties, and the scientists expect a very similar formation pathway for the entire class.

The new simulations became feasible through the development of the chemistry package KROME, a joint effort led by the University of Copenhagen. In the future, the scientists plan to explore a wide range of possible conditions to understand the formation of the most metal-poor stars observed in the Milky Way.

Original publication: Stefano Bovino et al. Formation of carbon-enhanced metal-poor stars in the presence of far ultraviolet radiation. 2014 ApJ 790 L35. Doi: 10.1088/2041-8205/790/2/L35.

Prof. Dr. Dominik Schleicher
University of Göttingen
Faculty of Physics – Institute for Astrophysics
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Phone +49 551 39-5045

Weitere Informationen:

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Stellar desk in wave-like motion
08.10.2015 | Max Planck Institute for Astronomy, Heidelberg

nachricht Mysterious ripples found racing through planet-forming disk
08.10.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>