Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars 2.0 – From the first generation of stars to the second

22.07.2014

Göttingen scientists model the formation of the oldest known star in the Milky Way

Scientists from the Universities of Göttingen and Copenhagen have modelled the formation of the oldest known star in the Milky Way using high-resolution computer simulations.


Density, temperature, and CII projections along the y-axis at a scale of 1 pc, for three different metallicities.

Photo: University of Göttingen

Using the star’s abundance patterns, the scientists performed cosmological simulations on a supercomputer of the North-German Supercomputing Alliance which included the dynamics of gas and dark matter as well as the chemical evolution.

From this simulation, the scientists expect to obtain an improved understanding of the transition from the first to the second generation of stars in the Universe. The results of their study were published in the Astrophysical Journal Letters.

The stars of the first generation were formed out of a primordial gas which consisted only of hydrogen and helium. Their mass ranged from ten to five hundred times the mass of our Sun. Nuclear processes in the interior of these stars created heavy elements like iron, silicon, carbon, and oxygen.

When the stars died during the first supernova explosions, the heavy elements were ejected and formed the stars of the second generation.

“Our simulations indicate that the gas efficiently cools during the process,” explains the leader of the study, Dr. Stefano Bovino from Göttingen University’s Institute for Astrophysics. “Such conditions favor the formation of low-mass stars.” The presence of heavy elements provides additional mechanisms for the gas to cool. It is therefore very important for the scientists to follow and model their chemical evolution.

The scientists chose the oldest known star of the Milky Way, called SMSS J031300.-36-670839.3 and estimated to be roughly 13.6 billion years old, because its abundance patterns were previously shown to be consistent with one single low-energy supernova.

“It seems very likely that this star is indeed one of the very first stars that formed out of the metal-enriched gas,” says Göttingen University’s Prof. Dr. Dominik Schleicher. “The chemical conditions reflect those right after the first supernova explosion.”

While SMSS J031300.-36-670839.3 has only a tiny amount of heavy elements, it has a relatively higher carbon abundance. It in fact represents an entire class with similar properties, and the scientists expect a very similar formation pathway for the entire class.

The new simulations became feasible through the development of the chemistry package KROME, a joint effort led by the University of Copenhagen. In the future, the scientists plan to explore a wide range of possible conditions to understand the formation of the most metal-poor stars observed in the Milky Way.

Original publication: Stefano Bovino et al. Formation of carbon-enhanced metal-poor stars in the presence of far ultraviolet radiation. 2014 ApJ 790 L35. Doi: 10.1088/2041-8205/790/2/L35.

Contact:
Prof. Dr. Dominik Schleicher
University of Göttingen
Faculty of Physics – Institute for Astrophysics
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Phone +49 551 39-5045
Email: dominik.schleicher@phys.uni-goettingen.de

Weitere Informationen:

http://vimeo.com/101191120
http://www.astro.physik.uni-goettingen.de/~dschleic/
http://www.kromepackage.org

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Scientists begin modeling universe with Einstein's full theory of general relativity
27.06.2016 | Case Western Reserve University

nachricht Seeds of black holes could be revealed by gravitational waves detected in space
27.06.2016 | Durham University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Four newly-identified genes could improve rice

27.06.2016 | Agricultural and Forestry Science

Scientists begin modeling universe with Einstein's full theory of general relativity

27.06.2016 | Physics and Astronomy

Newly-discovered signal in the cell sets protein pathways to mitochondria

27.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>