Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars 2.0 – From the first generation of stars to the second

22.07.2014

Göttingen scientists model the formation of the oldest known star in the Milky Way

Scientists from the Universities of Göttingen and Copenhagen have modelled the formation of the oldest known star in the Milky Way using high-resolution computer simulations.


Density, temperature, and CII projections along the y-axis at a scale of 1 pc, for three different metallicities.

Photo: University of Göttingen

Using the star’s abundance patterns, the scientists performed cosmological simulations on a supercomputer of the North-German Supercomputing Alliance which included the dynamics of gas and dark matter as well as the chemical evolution.

From this simulation, the scientists expect to obtain an improved understanding of the transition from the first to the second generation of stars in the Universe. The results of their study were published in the Astrophysical Journal Letters.

The stars of the first generation were formed out of a primordial gas which consisted only of hydrogen and helium. Their mass ranged from ten to five hundred times the mass of our Sun. Nuclear processes in the interior of these stars created heavy elements like iron, silicon, carbon, and oxygen.

When the stars died during the first supernova explosions, the heavy elements were ejected and formed the stars of the second generation.

“Our simulations indicate that the gas efficiently cools during the process,” explains the leader of the study, Dr. Stefano Bovino from Göttingen University’s Institute for Astrophysics. “Such conditions favor the formation of low-mass stars.” The presence of heavy elements provides additional mechanisms for the gas to cool. It is therefore very important for the scientists to follow and model their chemical evolution.

The scientists chose the oldest known star of the Milky Way, called SMSS J031300.-36-670839.3 and estimated to be roughly 13.6 billion years old, because its abundance patterns were previously shown to be consistent with one single low-energy supernova.

“It seems very likely that this star is indeed one of the very first stars that formed out of the metal-enriched gas,” says Göttingen University’s Prof. Dr. Dominik Schleicher. “The chemical conditions reflect those right after the first supernova explosion.”

While SMSS J031300.-36-670839.3 has only a tiny amount of heavy elements, it has a relatively higher carbon abundance. It in fact represents an entire class with similar properties, and the scientists expect a very similar formation pathway for the entire class.

The new simulations became feasible through the development of the chemistry package KROME, a joint effort led by the University of Copenhagen. In the future, the scientists plan to explore a wide range of possible conditions to understand the formation of the most metal-poor stars observed in the Milky Way.

Original publication: Stefano Bovino et al. Formation of carbon-enhanced metal-poor stars in the presence of far ultraviolet radiation. 2014 ApJ 790 L35. Doi: 10.1088/2041-8205/790/2/L35.

Contact:
Prof. Dr. Dominik Schleicher
University of Göttingen
Faculty of Physics – Institute for Astrophysics
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Phone +49 551 39-5045
Email: dominik.schleicher@phys.uni-goettingen.de

Weitere Informationen:

http://vimeo.com/101191120
http://www.astro.physik.uni-goettingen.de/~dschleic/
http://www.kromepackage.org

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>