Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stardust NExT set to meet its second comet

Stardust NExT must love comets. On Valentine's Day the spacecraft will get up close and personal with its second.

It's been seven years since the original Stardust danced with Wild 2 out beyond the orbit of Mars, capturing a thimbleful of comet dust in its collector. It's been five years since the craft jettisoned its sample-return capsule and its precious cargo for a landing in the Utah desert.

This artist\\\'s rendition depicts the Stardust NExT spacecraft approaching comet Tempel 1. The flyby will happen on Valentine\\\'s Day. Credit: NASA

Next Monday the probe will make history again in a 125-mile embrace with comet Tempel 1. It will be the first time two different comets have been surveyed with the same set of scientific instruments. And Tempel 1, explored by NASA's Deep Impact mission in 2005, will be the first comet to be visited by two spacecraft.

University of Washington astronomer Donald Brownlee, who had a ringside seat for the Wild 2 flyby as Stardust's principal investigator, is a co-investigator for Stardust NExT. The principal investigator is Joseph Veverka of Cornell University.

Brownlee has seen what the spacecraft can do, knows what it has survived and has enjoyed the phenomenal success it already has chalked up.

"Had we known at the time of the Wild 2 flyby how comets worked, we would have been even more nervous. There were jets at sonic speeds, and there were clumps of material coming out from the comet and breaking up," he said. That's scary when you know a particle larger than a centimeter across – less than half an inch – could destroy the spacecraft, along with years of planning and work.

Knowledge about comets has shifted significantly in just the last five years, thanks to the Wild 2 samples Stardust sent back to Earth.

Because comets form in the ultra-frigid region beyond Neptune, scientists expected the non-icy parts of the comet to be made up of particles that flowed into the solar system from out in the cosmos. Instead, it turned out that nearly everything bigger than a micron (one-millionth of a meter) in diameter was formed in the inner solar system, and at very high temperatures. The material somehow was carried out beyond the planets and was incorporated into comets.

"When the solar system was forming, it was actually turning itself inside out," Brownlee said. "I think we're seeing a component that was uniformly distributed when the solar system was forming."

Stardust NExT no longer has the ability to capture samples from a comet, since its collector returned to Earth following the encounter with Wild 2. At Tempel 1 it will take photos of the crater formed during the Deep Impact mission to learn more about the interior of comets. Deep Impact couldn't gather those images because its camera's vision was obscured by a cloud of debris from the creation of the crater.

Stardust NExT also will measure the size and distribution of particles flowing from Tempel 1 and analyze the particles' composition, and the science team hopes to make detailed observations of how interaction with the sun has physically changed Tempel 1 in the six years since the Deep Impact encounter.

Getting two high-profile science missions from the Stardust spacecraft took a lot of careful planning, but there also was a measure of luck.

"It's great to have a good proposal, but it takes a lot of good fortune too," Brownlee said. "We were fortunate to be selected, and once we were selected it took a lot of hard work, but a lot of things had to go right."

In fact, things went so right that the science will never be the same again.

"Scientifically, it was a phenomenal success. People think about the formation of the solar system differently than they used to," he said. And the discoveries are likely to go on for many years, as tools are developed to do new types of research on the comet grains.

"We do things now that we couldn't do at all when the sample came back, let alone when the spacecraft was launched," Brownlee said. These include the ability to make precise isotope measurements in micron-size grains, or detect the amino acid glycine in such tiny samples.

Stardust started out with about 22 gallons of hydrazine fuel for its thrusters. Now, two missions and about 3.6 billion miles later, there is perhaps a cup of fuel left, not enough for any meaningful operations.

So, after 12 years of being guided by mission controllers at NASA's Jet Propulsion Laboratory, the office-desk-sized spacecraft will continue to orbit the sun on its own. It will still have its scientific instruments and its camera, a spare from the Voyager program. It also still carries two microchips bearing the names, in microscopic type, of more than 1 million Earthlings who signed up before the launch. (Duplicate chips came back in the return capsule and now are on display at the Smithsonian Air and Space Museum in Washington, D.C.)

Brownlee recalls the bittersweet moment at the end of the first Stardust mission, when the spacecraft was put into hibernation until needed again, and the board in the control room flashed "LOS" – loss of signal. He knows even at the end of this mission the spacecraft will still be out there, in its long loops around the sun for perhaps a million years, until it crashes into Earth or, more likely, is ejected by gravity from the solar system.

"When it's chucked from the solar system by Jupiter, the spacecraft and its 'crew' of signatures will keep going for billions of years," he said. "The chip will probably be readable after the Earth is gone."

Stardust NExT facts
Stardust mission: Approved by NASA in 1995
Spacecraft manufacturer: Lockheed-Martin Aeronautics
Launch vehicle: Boeing Delta II rocket
Launch: Feb. 7, 1999 (as Stardust)
Asteroid Anne Frank flyby: Nov. 2, 2002
Comet Wild 2 flyby: Jan 2, 2004
Sample capsule return: Jan. 15, 2006
Stardust gets its NExT mission: July 3, 2007
Comet Tempel 1 flyby: Feb. 14, 2011
Electrical power: Generated by solar panels
Fuel: Hydrazine (about 22 gallons)
Miles traveled: About 3.6 billion
Mileage: About 164 million miles per gallon
For more information, contact Brownlee at 206-543-8575 or

See a NASA video on Stardust and Stardust NExT at

Stardust NExT on the Web:

Stardust on the Web:

Vince Stricherz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>