Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stardust NExT set to meet its second comet

10.02.2011
Stardust NExT must love comets. On Valentine's Day the spacecraft will get up close and personal with its second.

It's been seven years since the original Stardust danced with Wild 2 out beyond the orbit of Mars, capturing a thimbleful of comet dust in its collector. It's been five years since the craft jettisoned its sample-return capsule and its precious cargo for a landing in the Utah desert.


This artist\\\'s rendition depicts the Stardust NExT spacecraft approaching comet Tempel 1. The flyby will happen on Valentine\\\'s Day. Credit: NASA

Next Monday the probe will make history again in a 125-mile embrace with comet Tempel 1. It will be the first time two different comets have been surveyed with the same set of scientific instruments. And Tempel 1, explored by NASA's Deep Impact mission in 2005, will be the first comet to be visited by two spacecraft.

University of Washington astronomer Donald Brownlee, who had a ringside seat for the Wild 2 flyby as Stardust's principal investigator, is a co-investigator for Stardust NExT. The principal investigator is Joseph Veverka of Cornell University.

Brownlee has seen what the spacecraft can do, knows what it has survived and has enjoyed the phenomenal success it already has chalked up.

"Had we known at the time of the Wild 2 flyby how comets worked, we would have been even more nervous. There were jets at sonic speeds, and there were clumps of material coming out from the comet and breaking up," he said. That's scary when you know a particle larger than a centimeter across – less than half an inch – could destroy the spacecraft, along with years of planning and work.

Knowledge about comets has shifted significantly in just the last five years, thanks to the Wild 2 samples Stardust sent back to Earth.

Because comets form in the ultra-frigid region beyond Neptune, scientists expected the non-icy parts of the comet to be made up of particles that flowed into the solar system from out in the cosmos. Instead, it turned out that nearly everything bigger than a micron (one-millionth of a meter) in diameter was formed in the inner solar system, and at very high temperatures. The material somehow was carried out beyond the planets and was incorporated into comets.

"When the solar system was forming, it was actually turning itself inside out," Brownlee said. "I think we're seeing a component that was uniformly distributed when the solar system was forming."

Stardust NExT no longer has the ability to capture samples from a comet, since its collector returned to Earth following the encounter with Wild 2. At Tempel 1 it will take photos of the crater formed during the Deep Impact mission to learn more about the interior of comets. Deep Impact couldn't gather those images because its camera's vision was obscured by a cloud of debris from the creation of the crater.

Stardust NExT also will measure the size and distribution of particles flowing from Tempel 1 and analyze the particles' composition, and the science team hopes to make detailed observations of how interaction with the sun has physically changed Tempel 1 in the six years since the Deep Impact encounter.

Getting two high-profile science missions from the Stardust spacecraft took a lot of careful planning, but there also was a measure of luck.

"It's great to have a good proposal, but it takes a lot of good fortune too," Brownlee said. "We were fortunate to be selected, and once we were selected it took a lot of hard work, but a lot of things had to go right."

In fact, things went so right that the science will never be the same again.

"Scientifically, it was a phenomenal success. People think about the formation of the solar system differently than they used to," he said. And the discoveries are likely to go on for many years, as tools are developed to do new types of research on the comet grains.

"We do things now that we couldn't do at all when the sample came back, let alone when the spacecraft was launched," Brownlee said. These include the ability to make precise isotope measurements in micron-size grains, or detect the amino acid glycine in such tiny samples.

Stardust started out with about 22 gallons of hydrazine fuel for its thrusters. Now, two missions and about 3.6 billion miles later, there is perhaps a cup of fuel left, not enough for any meaningful operations.

So, after 12 years of being guided by mission controllers at NASA's Jet Propulsion Laboratory, the office-desk-sized spacecraft will continue to orbit the sun on its own. It will still have its scientific instruments and its camera, a spare from the Voyager program. It also still carries two microchips bearing the names, in microscopic type, of more than 1 million Earthlings who signed up before the launch. (Duplicate chips came back in the return capsule and now are on display at the Smithsonian Air and Space Museum in Washington, D.C.)

Brownlee recalls the bittersweet moment at the end of the first Stardust mission, when the spacecraft was put into hibernation until needed again, and the board in the control room flashed "LOS" – loss of signal. He knows even at the end of this mission the spacecraft will still be out there, in its long loops around the sun for perhaps a million years, until it crashes into Earth or, more likely, is ejected by gravity from the solar system.

"When it's chucked from the solar system by Jupiter, the spacecraft and its 'crew' of signatures will keep going for billions of years," he said. "The chip will probably be readable after the Earth is gone."

Stardust NExT facts
Stardust mission: Approved by NASA in 1995
Spacecraft manufacturer: Lockheed-Martin Aeronautics
Launch vehicle: Boeing Delta II rocket
Launch: Feb. 7, 1999 (as Stardust)
Asteroid Anne Frank flyby: Nov. 2, 2002
Comet Wild 2 flyby: Jan 2, 2004
Sample capsule return: Jan. 15, 2006
Stardust gets its NExT mission: July 3, 2007
Comet Tempel 1 flyby: Feb. 14, 2011
Electrical power: Generated by solar panels
Fuel: Hydrazine (about 22 gallons)
Miles traveled: About 3.6 billion
Mileage: About 164 million miles per gallon
For more information, contact Brownlee at 206-543-8575 or brownlee@astro.washington.edu.

See a NASA video on Stardust and Stardust NExT at http://www.jpl.nasa.gov/video/index.cfm.

Stardust NExT on the Web: http://stardustnext.jpl.nasa.gov

Stardust on the Web: http://stardust.jpl.nasa.gov

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu
http://stardust.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>