Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stardust discovered in far-off planetary systems

29.09.2011
Spectacular Discovery: Astronomers of the University Jena find a stardust belt in extra-solar planetary systems

Searching for extra-solar planets – which are planets outside of our solar system - is very popular these days. About 700 planets are known at the moment, a number that is continuously rising due to refined observational techniques. Professor Alexander Krivov and his team of astronomers of the Friedrich Schiller University Jena (Germany) just made a remarkable discovery: the scientists from the Astrophysical Institute were able to establish proof of so-called debris discs around two stars. The debris discs are remnants of the formation of the planets. “We are dealing with enormous accumulations of chunks of matter which create dust when they collide“, Alexander Krivov says. This dust is of greatest importance for the astronomers, because it helps to draw conclusions about the planet formation. There are even two debris discs in our solar system, the asteroid belt and the Kuiper belt amongst whose bodies the dwarf planet Pluto belongs.


Around the stars TrES-2 in the Draco constellation and XO-5 in the Lynx constellation astronomers from Jena University found a stardust belt. photo: WISE Image Service

What makes the Jena discovery so special is the tremendous distance from our solar system to the stars with the debris discs. “These stars are hundreds of light years away from the Earth“, according to Krivov. The particular focus is on TrES-2 in the Draco constellation and XO-5 in the Lynx constellation. Planets orbiting these stars can only be detected with the help of the transit method. It sounds like a simple principle: The night sky is photographed in regular intervals. Special software then checks the brightness of the stars on the images. If, in regular intervals, there are differences in brightness it is likely that a planet passes between the star and its observers.

The astronomers found evidence for the stardust with the help of photometric analysis. At first the characteristics of the stars can be analysed with it. If there are irregularities in the invisible infrared range, they point to the existence of stardust. Krivov says: “The dust is warmed up by the star and radiates heat. We see that radiation curve is above the radiation curve of the star as a clear sign of the existence of stardust.”

Professor Krivov draws an impressive comparison for the search of debris discs in the vastness of the universe: it is as if you would detect an ice-cream cooled down to minus 130 degrees with a heat detector in a 5,000 kilometer distance from Jena.

Alexander Krivov’s team of scientists concentrated its search for debris disc candidates on about 100 known extra-solar systems with transiting planets. Of these systems, they found 52 in the observational results of the US-American space telescope WISE published in April this year. The Jena scientists got lucky with two systems. As early as 1 June Alexander Krivov, Martin Reidemeister, Simone Fiedler, Dr. Torsten Löhne und Professor Ralph Neuhäuser submitted their paper to the science magazine ‘Monthly Notices of the Royal Astronomical Society’ for publication in the ‘Letters’ section. Meanwhile the paper has been published under the title ‘Debris disc candidates in systems with transiting planets’ (doi:10.1111/j.1745-3933.2011.01133.x).

Contact Details:
Prof. Dr. Alexander Krivov
Astrophysikalisches Institut und Universitätssternwarte der Friedrich-Schiller-Universität Jena
Schillergässchen 2-3, D-07745 Jena
phone: ++49 3641 947530
email: krivov[at]astro.uni-jena.de

Stephan Laudien | idw
Further information:
http://www.uni-jena.de

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>