Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starburst galaxy sheds light on longstanding cosmic mystery

04.11.2009
An international collaboration that includes scientists from the University of Delaware's Bartol Research Institute in the Department of Physics and Astronomy has discovered very-high-energy gamma rays in the Cigar Galaxy (M82), a bright galaxy filled with exploding stars 12 million light years from Earth.

The gamma rays observed by the team have energies more than a trillion times higher than the energy of visible light and are the highest-energy photons ever detected from a galaxy undergoing large amounts of star formation.

The discovery, made from data taken over a two-year-long observing campaign by the VERITAS collaboration of more than 100 scientists from 22 different institutions in the United States, Ireland, United Kingdom, and Canada, appears in the Nov. 1 advance online edition of the scientific journal Nature.

VERITAS (Very Energetic Radiation Imaging Telescope Array System) is a gamma ray observatory located at the Fred Lawrence Whipple Observatory near Amado, Ariz.

The finding provides “strong evidence” that exploding stars are the origin of cosmic rays, according to Jamie Holder, assistant professor of physics and astronomy at the University of Delaware and deputy spokesperson for the VERITAS collaboration.

Produced in violent processes in our own galaxy and beyond, cosmic rays are actually energetic particles that continually bombard Earth's atmosphere. They are important, Holder says, because they make up a large fraction of the energy budget of our galaxy, The Milky Way. The amount of energy in cosmic rays is comparable to the energy contained in both starlight, and in Galactic magnetic fields, Holder notes.

“Although cosmic rays were first detected 100 years ago, their origins have been a mystery,” says Holder. “One idea has been that they are produced by supernova explosions, but there was never any direct proof until now. This gamma ray measurement by VERITAS looks at a galaxy different from our own where there are 30 times as many supernovae. The fact that we see gamma rays indicates that there are many more cosmic rays being produced by these supernovae.”

In the active starburst region at the Cigar Galaxy's center, stars are being formed at a rate approximately ten times more rapidly than in “normal” galaxies like our Milky Way, Holder says.

The cosmic rays produced in the formation, life, and death of the massive stars in this region eventually produce diffuse gamma-ray emission via their interactions with interstellar gas and radiation.

Holder and former postdoctoral researcher Ester Aliu and doctoral student Dana Boltuch were involved in the study from UD.

Holder scheduled all of the observations as chair of the team's observing time allocation committee, and he and Aliu ran the array of telescopes based in southern Arizona to collect a significant portion of the 137 hours of data collected for the study. Holder provided a critical secondary analysis with an independent analysis package to confirm the result.

The Bartol Research Institute is a research center in UD's Department of Physics and Astronomy. The institute's primary function is to carry out forefront scientific research with a primary focus on physics, astronomy, and space sciences.

Article by Tracey Bryant

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>