Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Star Trek’ Warp Speed? Two Physicists Have a New Idea That Could Make it Happen

11.05.2009
Two Baylor University physicists believe they have an idea that can turn traveling at the speed of light from science fiction to science, and their idea does not break any laws of physics.

With the new movie ‘Star Trek’ opening in theaters across the nation, one thing movie goers will undoubtedly see is the Starship Enterprise racing across the galaxy at the speed of light. But can traveling at warp speed ever become a reality?

Two Baylor University physicists believe they have an idea that can turn traveling at the speed of light from science fiction to science, and their idea does not break any laws of physics.

Dr. Gerald Cleaver, associate professor of physics at Baylor, and Dr. Richard Obousy, a Baylor post-doctoral student, theorize that by manipulating the space-time dimensions around the spaceship with a massive amount of energy, it would create a “bubble” that could push the ship faster than the speed of light. To create this bubble, the Baylor physicists believe manipulating the 11-dimension would create dark energy. Cleaver said positive dark energy is responsible for speeding up the universe as time moves on, just like it did after the Big Bang, when the universe expanded faster than the speed of light.

“Think of it like a surfer riding a wave,” said Cleaver, who co-authored the paper with Obousy about the new method. “The ship would be pushed by the bubble and the bubble would be traveling faster than the speed of light.”

The method is based on the Alcubierre drive, which proposes expanding the fabric of space behind a ship into a bubble and shrinking space-time in front of the ship. The ship would not actually move, rather the ship would sit in between the expanding and shrinking space-time dimensions. Since space would move around the ship, the theory does not violate Einstein’s Theory of Relativity, which states that it would take an infinite amount of energy to accelerate an object faster than the speed of light.

String theory suggests the universe is made up of multiple dimensions. Height, width and length are three dimensions, and time is the fourth dimension. Scientists believe that there are a total of 10 dimensions, with six other dimensions that we can not yet identify. A new theory, called M-theory, takes string theory one step farther and states that the “strings” actually vibrate in an 11-dimensional space. It is this 11th dimension that the Baylor researchers believe could help propel a ship faster than the speed of light.

The Baylor physicists estimate that the amount of energy needed to influence the extra dimensions is equivalent to the entire mass of Jupiter being converted into energy.

“That is an enormous amount of energy,” Cleaver said. “We are still a very long ways off before we could create something to harness that type of energy.”

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>