Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Is Discovered To Be a Close Neighbor of the Sun and the Coldest of Its Kind

28.04.2014

A "brown dwarf" star that appears to be the coldest of its kind -- as frosty as Earth's North Pole -- has been discovered by a Penn State University astronomer using NASA's Wide-field Infrared Survey Explorer (WISE) and Spitzer Space Telescopes. Images from the space telescopes also pinpointed the object's distance at 7.2 light-years away, making it the fourth closest system to our Sun.

"It is very exciting to discover a new neighbor of our solar system that is so close," said Kevin Luhman, an associate professor of astronomy and astrophysics at Penn State and a researcher in the Penn State Center for Exoplanets and Habitable Worlds. "In addition, its extreme temperature should tell us a lot about the atmospheres of planets, which often have similarly cold temperatures."


This image is an artist's conception of the brown dwarf WISE J085510.83-071442.5. The Sun is the bright star directly to the right of the brown dwarf. Credit: Robert Hurt/JPL, Janella Williams/Penn State University.

Brown dwarfs start their lives like stars, as collapsing balls of gas, but they lack the mass to burn nuclear fuel and radiate starlight. The newfound coldest brown dwarf, named WISE J085510.83-071442.5, has a chilly temperature between minus 54 and 9 degrees Fahrenheit (minus 48 to minus 13 degrees Celsius). Previous record holders for coldest brown dwarfs, also found by WISE and Spitzer, were about room temperature.

Although it is very close to our solar system, WISE J085510.83-071442.5 is not an appealing destination for human space travel in the distant future. "Any planets that might orbit it would be much too cold to support life as we know it" Luhman said.

"This object appeared to move really fast in the WISE data," said Luhman. "That told us it was something special." The closer a body, the more it appears to move in images taken months apart. Airplanes are a good example of this effect: a closer, low-flying plane will appear to fly overhead more rapidly than a high-flying one.

WISE was able to spot the rare object because it surveyed the entire sky twice in infrared light, observing some areas up to three times. Cool objects like brown dwarfs can be invisible when viewed by visible-light telescopes, but their thermal glow -- even if feeble -- stands out in infrared light.

After noticing the fast motion of WISE J085510.83-071442.5 in March, 2013, Luhman spent time analyzing additional images taken with Spitzer and the Gemini South telescope on Cerro Pachon in Chile. Spitzer's infrared observations helped to determine the frosty temperature of the brown dwarf.

WISE J085510.83-071442.5 is estimated to be 3 to 10 times the mass of Jupiter. With such a low mass, it could be a gas giant similar to Jupiter that was ejected from its star system. But scientists estimate it is probably a brown dwarf rather than a planet since brown dwarfs are known to be fairly common.

If so, it is one of the least massive brown dwarfs known.Combined detections from WISE and Spitzer, taken from different positions around the Sun, enabled the measurement of its distance through the parallax effect. This is the same principle that explains why your finger, when held out right in front of you, appears to jump from side to side when you alternate left-eye and right-eye views.

In March of 2013, Luhman's analysis of the images from WISE uncovered a pair of much warmer brown dwarfs at a distance of 6.5 light years, making that system the third closest to the Sun. His search for rapidly moving bodies also demonstrated that the outer solar system probably does not contain a large, undiscovered planet, which has been referred to as "Planet X" or "Nemesis."

"It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the Sun's nearest neighbors," said Michael Werner, the project scientist for Spitzer at NASA's Jet Propulsion Laboratory (JPL), which manages and operates Spitzer.

"This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer." [ Whitney Clavin / B K K ]

Contacts

Kevin Luhman: kluhman@astro.psu.edu, (+1) 814-863-4957 or (+1) 814-865-0418Barbara Kennedy (PIO): science@psu.edu, 814-863-4682

Barbara K. Kennedy | Eurek Alert!
Further information:
http://www.psu.edu
http://science.psu.edu/news-and-events/2014-news/Luhman4-2014

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>