Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC

20.04.2015

New detector component picks up particles composed of heavy quarks to probe primordial quark-gluon plasma.

The Science


Image courtesy of Brookhaven National Laboratory

The Heavy Flavor Tracker being installed in the heart of the STAR detector at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory.

Thousands of times a second the Relativistic Heavy Ion Collider (RHIC), a particle collider at Brookhaven National Laboratory, creates a quark-gluon plasma—a recreation of the hot quark soup that existed at the dawn of the universe. Particles composed of heavy quarks—which go by whimsical names such as “charm” and “beauty”—can help reveal subtle details about the quark-gluon plasma, and by extension, the early universe and the origins of matter.

The Impact

Nuclear physicists conducting research at RHIC now have the ability to detect these rare, elusive particles using the Heavy Flavor Tracker (HFT), a new component recently installed as part of the STAR experiment. This device will help to precisely measure the plasma’s properties, including its ability to flow like a nearly perfect liquid, and can offer insight into how certain particles lose energy as they traverse the plasma.

Summary

Particles composed of quarks that are heavier than the “up” and “down” quarks that make up ordinary atomic nuclei can help reveal subtle details about a primordial soup made of matter’s building blocks—known as a quark-gluon plasma. This hot quark soup, which existed at the dawn of the universe, is recreated thousands of times a second when ordinary nuclei are smashed together in energetic collisions at the Relativistic Heavy Ion Collider (RHIC), a particle collider at Brookhaven National Laboratory. But the particles containing heavy quarks—which go by whimsical names such as “charm” and “beauty”—are produced only rarely and disappear in an instant. Nuclear physicists conducting research at RHIC now have the ability to detect these rare, elusive particles using the Heavy Flavor Tracker (HFT), a new component recently installed as part of the STAR experiment. This device will help to precisely measure the plasma’s properties, including its ability to flow like a nearly perfect liquid, and can offer insight into how certain particles lose energy as they traverse the plasma.

The STAR Heavy Flavor Tracker (HFT) will provide precise measurements of the production rates of particles containing different combinations of heavy quarks, some of which are heavier than others. Measuring how the heavy particles interact with the quark-gluon plasma will give physicists further insight into the plasma's ability to flow with extremely low viscosity, or resistance—almost like dropping variously sized pebbles into a stream to see how fast it is flowing. These measurements may also help explain the mechanism by which even high-momentum particles appear to lose energy to the plasma. The different abundances and masses of heavy quarks can help differentiate how matter interacts with quarks and provide insight into thermalization—how the matter created in RHIC’s collisions approaches thermal equilibrium. These measurements will lead to a better understanding of properties of the quark-gluon plasma and will stimulate new theoretical studies.

The energy deposited when RHIC collides gold ions at nearly the speed of light creates thousands of new particles, including some rare combinations of different types of heavy quarks. These heavy particles decay in the time it takes them to travel about 100 microns—about the width of a hair. The HFT, now inserted within the core of the STAR experiment, was designed to identify these fleeting heavy particles using a four-layer silicon detector. The first two layers are state-of-the-art pixel detectors (PXL) in which each layer uses silicon pixels with dimensions of 20 by 20 micrometers mounted on very light structures. The PXL detector is the first at a collider to use a new detector concept called Monolithic Active Pixel Sensors (MAPS). The MAPS sensors are thinned to 50 micrometers and have been placed very close to the beam line in which the particle collisions take place so they can track the elusive heavy particles immediately after they decay. The entire PXL detector can be retracted and if necessary replaced with a spare within a 24-hour period. Both the high resolution and the low mass of the detector represent a breakthrough in pixel technology. Two additional silicon-detector systems are used to increase the efficiency of the HFT. A single cylindrical layer of silicon pad detectors (IST) surrounds the PXL. The outermost detection layer consists of double-sided Silicon Strip Detectors (SSD).

The PXL detector was designed and built at Lawrence Berkeley National Laboratory (LBNL) using novel MAPS sensors that were developed at Institut Pluridisciplinaire Hubert CURIEN (IPHC, Strasbourg, France). The IST was designed and built at MIT, the University of Illinois at Chicago, and Indiana University; while the SSD readout electronics were built at LBNL and designed by a collaboration between LBNL and Subatech (Nantes, France). Overall detector integration was done by BNL and LBNL; and project management was provided by BNL with assistance from LBNL.

Installed at the STAR detector in time for the 2014 RHIC run, the HFT detector has so far recorded 1.2 billion gold-gold collision events, meeting all expectations in its performance to date. The STAR collaboration has begun analyzing this abundance of new data and looks forward to incorporating it into a deeper understanding of the quark-gluon plasma created at RHIC.

Funding

The Heavy Flavor Tracker is an Office of Nuclear Physics supported MIE project which was initiated in 2010. The following STAR institutions are collaborators in this work: BNL, Czech Technical University and NPI Prague, UCLA, Indiana University Cyclotron Facility, IPHC Strasbourg, MIT, LBNL, Purdue University, SUBATECH Nantes, UIC and UT Austin.

Publications

L. Greiner et al., "A MAPS based vertex detector for the STAR experiment at RHIC." Nucl. Instr. and Meth. A 650 (1), 68-72 (2010). [DOI: 10.1016/j.nima.2010.12.006]

C. Hu-Guo et al., "First reticule size MAPS with digital output and integrated zero suppression for the EUDET-JRA1 beam telescope." Nucl. Instrum. Meth. A 623 (1), 480-482 (2010). [DOI: 10.1016/j.nima.2010.03.043]

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>