Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Formation Region in the Orion Nebular investigated

13.05.2014

The Stuttgart instrument delivers first scientific data

On its first scientific mission the far-infrared spectrometer FIFI-LS (Field-Imaging Far-Infrared Line Spectrometer) developed by a team led by the University of Stuttgart has explored the prominent star-forming region of the Orion Nebula. The instrument was flown on board the airborne observatory known as SOFIA (Stratospheric Observatory For Infrared Astronomy), a joint program of the National Aeronautics and Space Administration (NASA) and the German Aerospace Centre (DLR).


The far-infrared-spectrometer FIFI-LS at the SOFIA telescope (copyright: DSI).

FIFI-LS was built at the University of Stuttgart's Institute of Space Systems (IRS) under the leadership of Alfred Krabbe. In November 2014, the instrument was shipped to NASA's Palmdale, California, facility to be prepared for operations on board SOFIA. Additionally the German SOFIA Institute (DSI) of the University of Stuttgart coordinates the operation of the flying observatory on behalf of the German partner.

Cooling of the gas is a requirement for star formation

The Orion Nebula is located about 1,300 light years from Earth, in the Milky Way Galaxy. This area of the sky is of high scientific interest, because it is one of the most active star-forming regions in our galaxy. Using FIFI-LS, astronomers want to investigate the Becklin-Neugebauer (BN) object, which is a molecular cloud that hosts young stars as well as dense gas which is still forming new stars.

A main requirement for this process is, that the “warm” gas in this region will cool down from about 100 K to about 10 K – only then the pressure inside the cloud drops and the gas density increases sufficiently enough in order to build stars. Elements like oxygen and carbon can drive this cooling process by emitting thermal energy from the inside of the cloud to the outside.

Leslie Looney, from University of Illinois and principal investigator for the Orion observations, will try to find out how these cooling processes work in detail. “Oxygen and carbon emit a considerable amount of cloud’s thermal energy at particular wave length, which we can monitor in a superb way with FIFI-LS,” said Looney. Currently SOFIA is the only observatory that can detect cosmic radiation at these far-infrared wavelengths.

In parallel to the cooling, the hot and young Trapezium stars of Orion heat the gas cloud. When this warmed-up and ionized gas hits cooler gas, it forms a shock front like the Orion bar. From the strength and the spatial distribution of the [OI] 63, 145 µm and [CII] 157 µm lines, Leslie Looney can investigate the actual relation between the cooling and the heating mechanisms. For example [CII] 157 µm could not be observed with any other observatory before. “The unique aspect of the FIFIU-LS data is the size of the map at this resolution," the astronomer summarizes.

Astronomer and instrument builder Alfred Krabbe from IRS is also very glad: “I am really happy that FIFI-LS cooperated in such a great way with the SOFIA observatory and that we can now provide a new scientific instrument to the astronomical community. For the next observing cycle that will start in spring 2015, the team plans to do more observations on Orion in order to complete the now existing charts.

Detailed information to FIFI-LS
http://www.irs.uni-stuttgart.de/forschung/fifi-ls/index.html
Earlier FIFI-LS news
Erfolgreiche Inbetriebnahme von FIFI-LS (16. März 2014)
FIFI-LS wiord nach Kalifornien verschifft (12. November 2013)
Contact:
Dörte Mehlert
mehlert@dsi.uni-stuttgart.de
Tel.: +49 (0)711 – 685 69632

SOFIA, the "Stratospheric Observatory for Infrared Astronomy" is a joint project of the Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR; German Aerospace Centre, grant: 50OK0901) and the National Aeronautics and Space Administration (NASA). It is funded on behalf of DLR by the Federal Ministry of Economics and Technology based on legislation by the German Parliament the state of Baden-Württemberg and the Universität Stuttgart. Scientific operation for Germany is coordinated by the German SOFIA-Institute (DSI) of the Universität Stuttgart, in the USA by the Universities Space Research Association (USRA). The development of the German Instruments is financed by the Max Planck Society (MPG) and the German Research Foundation (DFG) an by the DLR.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Further reports about: Aeronautics Astronomer Astronomy DLR DSI German IRS Krabbe NASA Observatory Space Stratospheric

More articles from Physics and Astronomy:

nachricht New Study Reveals Stars in Milky Way Have Moved
03.08.2015 | New Mexico State University (NMSU)

nachricht Telescopes team up to find distant Uranus-sized planet through microlensing
31.07.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Seeing” molecular interactions could give boost to organic electronics

03.08.2015 | Materials Sciences

Stroke: news about platelets

03.08.2015 | Life Sciences

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>