Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Formation Region in the Orion Nebular investigated

13.05.2014

The Stuttgart instrument delivers first scientific data

On its first scientific mission the far-infrared spectrometer FIFI-LS (Field-Imaging Far-Infrared Line Spectrometer) developed by a team led by the University of Stuttgart has explored the prominent star-forming region of the Orion Nebula. The instrument was flown on board the airborne observatory known as SOFIA (Stratospheric Observatory For Infrared Astronomy), a joint program of the National Aeronautics and Space Administration (NASA) and the German Aerospace Centre (DLR).


The far-infrared-spectrometer FIFI-LS at the SOFIA telescope (copyright: DSI).

FIFI-LS was built at the University of Stuttgart's Institute of Space Systems (IRS) under the leadership of Alfred Krabbe. In November 2014, the instrument was shipped to NASA's Palmdale, California, facility to be prepared for operations on board SOFIA. Additionally the German SOFIA Institute (DSI) of the University of Stuttgart coordinates the operation of the flying observatory on behalf of the German partner.

Cooling of the gas is a requirement for star formation

The Orion Nebula is located about 1,300 light years from Earth, in the Milky Way Galaxy. This area of the sky is of high scientific interest, because it is one of the most active star-forming regions in our galaxy. Using FIFI-LS, astronomers want to investigate the Becklin-Neugebauer (BN) object, which is a molecular cloud that hosts young stars as well as dense gas which is still forming new stars.

A main requirement for this process is, that the “warm” gas in this region will cool down from about 100 K to about 10 K – only then the pressure inside the cloud drops and the gas density increases sufficiently enough in order to build stars. Elements like oxygen and carbon can drive this cooling process by emitting thermal energy from the inside of the cloud to the outside.

Leslie Looney, from University of Illinois and principal investigator for the Orion observations, will try to find out how these cooling processes work in detail. “Oxygen and carbon emit a considerable amount of cloud’s thermal energy at particular wave length, which we can monitor in a superb way with FIFI-LS,” said Looney. Currently SOFIA is the only observatory that can detect cosmic radiation at these far-infrared wavelengths.

In parallel to the cooling, the hot and young Trapezium stars of Orion heat the gas cloud. When this warmed-up and ionized gas hits cooler gas, it forms a shock front like the Orion bar. From the strength and the spatial distribution of the [OI] 63, 145 µm and [CII] 157 µm lines, Leslie Looney can investigate the actual relation between the cooling and the heating mechanisms. For example [CII] 157 µm could not be observed with any other observatory before. “The unique aspect of the FIFIU-LS data is the size of the map at this resolution," the astronomer summarizes.

Astronomer and instrument builder Alfred Krabbe from IRS is also very glad: “I am really happy that FIFI-LS cooperated in such a great way with the SOFIA observatory and that we can now provide a new scientific instrument to the astronomical community. For the next observing cycle that will start in spring 2015, the team plans to do more observations on Orion in order to complete the now existing charts.

Detailed information to FIFI-LS
http://www.irs.uni-stuttgart.de/forschung/fifi-ls/index.html
Earlier FIFI-LS news
Erfolgreiche Inbetriebnahme von FIFI-LS (16. März 2014)
FIFI-LS wiord nach Kalifornien verschifft (12. November 2013)
Contact:
Dörte Mehlert
mehlert@dsi.uni-stuttgart.de
Tel.: +49 (0)711 – 685 69632

SOFIA, the "Stratospheric Observatory for Infrared Astronomy" is a joint project of the Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR; German Aerospace Centre, grant: 50OK0901) and the National Aeronautics and Space Administration (NASA). It is funded on behalf of DLR by the Federal Ministry of Economics and Technology based on legislation by the German Parliament the state of Baden-Württemberg and the Universität Stuttgart. Scientific operation for Germany is coordinated by the German SOFIA-Institute (DSI) of the Universität Stuttgart, in the USA by the Universities Space Research Association (USRA). The development of the German Instruments is financed by the Max Planck Society (MPG) and the German Research Foundation (DFG) an by the DLR.

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Further reports about: Aeronautics Astronomer Astronomy DLR DSI German IRS Krabbe NASA Observatory Space Stratospheric

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>