Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star blasts planet with X-rays

14.09.2011
A nearby star is pummeling a companion planet with a barrage of X-rays a hundred thousand times more intense than the Earth receives from the Sun.

New data from NASA's Chandra X-ray Observatory and the European Southern Observatory's Very Large Telescope suggest that high-energy radiation is evaporating about 5 million tons of matter from the planet every second. This result gives insight into the difficult survival path for some planets.


This graphic contains an image and illustration of a nearby star, named CoRoT-2a, and an orbiting planet known as CoRoT-2b. The image contains X-rays from Chandra (purple) of CoRoT-2a along with optical and infrared data of the field of view in which it is found. CoRoT-2b, which is not seen in this image, orbits extremely closely to the star. In fact, the separation between the star and planet is only about 3 percent of the distance between the Earth and the Sun. The Chandra data indicate that planet is being blasted by X-rays with such intensity that some 5 millions of tons of material are being eroded from the planet every second. Credit: Optical: NASA/NSF/IPAC-Caltech/UMass/2MASS, PROMPT; Wide field image: DSS; X-ray: NASA/CXC/Univ of Hamburg/S.Schröter et al; Illustration: CXC/M. Weiss

The planet, known as CoRoT-2b, has a mass about 3 times that of Jupiter (1000 times that of Earth) and orbits its parent star, CoRoT-2a at a distance roughly ten times the distance between Earth and the Moon.

The CoRoT-2 star and planet -- so named because the French Space Agency's Convection, Rotation and planetary Transits (CoRoT) satellite discovered them in 2008 -- is a relatively nearby neighbor of the Solar System at a distance of 880 light years.

"This planet is being absolutely fried by its star," said Sebastian Schroeter of the University of Hamburg in Germany. "What may be even stranger is that this planet may be affecting the behavior of the star that is blasting it."

According to optical and X-ray data, the CoRoT-2 system is estimated to be between about 100 million and 300 million years old, meaning that the star is fully formed. The Chandra observations show that CoRoT-2a is a very active star, with bright X-ray emission produced by powerful, turbulent magnetic fields. Such strong activity is usually found in much younger stars.

"Because this planet is so close to the star, it may be speeding up the star's rotation and that could be keeping its magnetic fields active," said co-author Stefan Czesla, also from the University of Hamburg. "If it wasn't for the planet, this star might have left behind the volatility of its youth millions of years ago."

Support for this idea come from observations of a likely companion star that orbits CoRoT-2a at a distance about a thousand times greater than the separation between the Earth and our Sun. This star is not detected in X-rays, perhaps because it does not have a close-in planet like CoRoT-2b to cause it to stay active.

Another intriguing aspect of CoRoT-2b is that it appears to be unusually inflated for a planet in its position.

"We're not exactly sure of all the effects this type of heavy X-ray storm would have on a planet, but it could be responsible for the bloating we see in CoRoT-2b," said Schroeter. "We are just beginning to learn about what happens to exoplanets in these extreme environments."

These results were published in the August issue of Astronomy and Astrophysics. The other co-authors were Uwe Wolter, Holger Mueller, Klaus Huber and Juergen Schmitt, all from the University of Hamburg.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

Megan Watzke | EurekAlert!
Further information:
http://chandra.harvard.edu/

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>