Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More star births than astronomers have calculated

02.10.2008
More newborn stars are apparently emerging around the universe than previously assumed. Researchers at Bonn University have now published a paper in the prominent science journal “Nature” explaining this discrepancy. Their study has identified a systematic error in the method of estimation.

The “birth rate” for stars is certainly not easy to determine. Distances in the universe are far too great for astronomers to be able to count all the newly formed celestial bodies with the aid of a telescope. So it is fortunate that the emerging stars give themselves away by a characteristic signal known as “H-alpha” emissions. The larger the number of stars being formed in a particular region of the firmament, the more H-alpha rays are emitted from that region.

“H-alpha emissions only occur in the vicinity of very heavy stars,” explains Jan Pflamm-Altenburg of the Argelander Institute of Astronomy at Bonn University. It has long been accepted that heavy and light stars are always born in a certain ratio to each other. One “H-alpha baby” is thought to be accompanied by 230 lighter stars with a mass too low for them to emit H-alpha rays.

However, new observations make this theory untenable. On the edges of “disc galaxies” (like the Milky Way) the H-alpha radiation ceases abruptly. For a long time astronomers concluded from this finding that no stars are being born in this region. “The explanation offered is simply that too little gaseous matter exists for it to collapse into balls and form stars,” says Jan Pflamm-Altenburg. “These theories largely inform our understanding of how galaxies developed from the Big Bang to the present.”

Satellite mission baffles astronomers

A satellite mission has recently revealed that stars are in fact being formed beyond the H-alpha perimeter. These stars are, without exception, so light that no H-alpha radiation is emitted. Consequently, the numerical ratio of 230 light stars to one heavy star does not apply to the edges of galaxies. “This observation presented the astronomy community with quite a conundrum,” says Professor Dr. Pavel Kroupa of the Argelander Institute.

Kroupa and Pflamm-Altenburg have come up with a solution which, they say, is basically very simple. They note that star births are not evenly distributed across galaxies but are focused on the star clusters – well known examples being the Seven Sisters and the Orion Nebula. And only large, high-mass clusters produce heavy stars, i.e. the newborn stars that can create the H-alpha emission. “But these heavy star clusters primarily occur in the core regions of disc galaxies,” says Jan Pflamm-Altenburg. “Towards the edges they become increasingly rare. The outer regions tend to contain smaller clusters in which the formation of lighter stars is more frequent.”

The conclusion is that a numerical ratio of 230 to 1 is only valid for the centres of galaxies. On the edges of galaxies each “H-alpha baby” might be accompanied by a thousand or more light stars. Those astronomers who always use the same factor when calculating total star formations from their H-alpha readings therefore underestimate the number of newborn stars.

The theoretical work of the two Bonn-based astrophysicists supports affirms that the mass of new stars depends linearly on the mass of the gas in their vicinity. Their conclusions open up completely new perspectives for research into the development of galaxies.

Contact:
Jan Pflamm-Altenburg
Argelander-Institut für Astronomie, University of Bonn
Telephone: 0228/73-5656
E-mail: jpflamm@astro.uni-bonn.de
Professor Dr. Pavel Kroupa
Argelander-Institut für Astronomie, University of Bonn
Telephone: 0177/9566127
E-mail: pavel@astro.uni-bonn.de

Prof. Dr. Pavel Kroupa | alfa
Further information:
http://www.astro.uni-bonn.de

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>