Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stanford researchers show how universe's violent youth seeded cosmos with iron

By detecting an even distribution of iron throughout a massive galaxy cluster, astrophysicists can tell the 10-billion-year-old story of how exploding stars and black holes sowed the early cosmos with heavy elements

New evidence that iron is spread evenly between the galaxies in one of the largest galaxy clusters in the universe supports the theory that the universe underwent a turbulent and violent youth more than 10 billion years ago. That explosive period was responsible for seeding the cosmos with iron and other heavy elements that are critical to life itself.

Researchers from the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), jointly run by Stanford University and the Department of Energy's SLAC National Accelerator Laboratory, shed light on this important era by analyzing 84 sets of X-ray telescope observations from the Japanese-US Suzaku satellite. Their results appear in the Oct. 31 issue of the journal Nature.

In particular, the researchers looked at iron distribution throughout the Perseus cluster, a large grouping of galaxies about 250 million light-years away.

"We saw that iron is spread out between the galaxies remarkably smoothly," said Norbert Werner, an astrophysicist at KIPAC and lead author of the paper. "That means it had to be present in the intergalactic gas before the Perseus cluster formed."

The even distribution of these elements supports the idea that they were created at least 10 billion to 12 billion years ago. According to the paper, during this time of intense star formation, billions of exploding stars created vast quantities of heavy elements in the alchemical furnaces of their own destruction. This was also the epoch when black holes in the hearts of galaxies were at their most energetic.

"The combined energy of these cosmic phenomena must have been strong enough to expel most of the metals from the galaxies at early times and to enrich and mix the intergalactic gas," said co-author and KIPAC graduate student Ondrej Urban.

To settle the question of whether the heavy elements created by supernovae remain mostly in their home galaxies or are spread out through intergalactic space, the researchers looked through the Perseus cluster in eight different directions. They focused on the hot, 10-million-degree gas that fills the spaces between galaxies and found the spectroscopic signature of iron reaching all the way to the cluster's edges.

The researchers estimate that the amount of iron in the cluster is roughly equivalent to the mass of 50 billion suns.

"We think most of the iron came from a single type of supernovae, called Type Ia supernovae," said former KIPAC member and co-author Aurora Simionescu, who is currently with the Japanese Aerospace Exploration Agency as an International Top Young Fellow.

In a Type Ia supernova, a star explodes and releases all its material to the void. The researchers believe that at least 40 billion Type Ia supernovae must have exploded within a relatively short period on cosmological time scales in order to release that much iron and have the force to drive it out of the galaxies.

The results suggest that the Perseus cluster is probably not unique and that iron – along with other heavy elements – is evenly spread throughout all massive galaxy clusters, said Steven Allen, a KIPAC associate professor and head of the research team.

"You are older than you think – or at least, some of the iron in your blood is older, formed in galaxies millions of light years away and billions of years ago," Simionescu said.

The researchers are now looking for iron in other clusters and eagerly awaiting a mission capable of measuring the concentrations of elements in the hot gas with greater accuracy.

"With measurements like these, the Suzaku satellite is having a profound impact on our understanding of how the largest structures in our universe grow," Allen said. "We're really looking forward to what further data can tell us."

The research was supported by the Japanese Aerospace Exploration Agency and by the US Department of Energy.

Lori Ann White is a writer at SLAC.

For more Stanford experts on physics and other topics, visit Stanford Experts.


Lori Ann White, SLAC Staff Writer: (650) 926-4897,
Bjorn Carey, Stanford News Service: (650) 725-1944,

Lori Ann White | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>