Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers show how universe's violent youth seeded cosmos with iron

31.10.2013
By detecting an even distribution of iron throughout a massive galaxy cluster, astrophysicists can tell the 10-billion-year-old story of how exploding stars and black holes sowed the early cosmos with heavy elements

New evidence that iron is spread evenly between the galaxies in one of the largest galaxy clusters in the universe supports the theory that the universe underwent a turbulent and violent youth more than 10 billion years ago. That explosive period was responsible for seeding the cosmos with iron and other heavy elements that are critical to life itself.

Researchers from the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), jointly run by Stanford University and the Department of Energy's SLAC National Accelerator Laboratory, shed light on this important era by analyzing 84 sets of X-ray telescope observations from the Japanese-US Suzaku satellite. Their results appear in the Oct. 31 issue of the journal Nature.

In particular, the researchers looked at iron distribution throughout the Perseus cluster, a large grouping of galaxies about 250 million light-years away.

"We saw that iron is spread out between the galaxies remarkably smoothly," said Norbert Werner, an astrophysicist at KIPAC and lead author of the paper. "That means it had to be present in the intergalactic gas before the Perseus cluster formed."

The even distribution of these elements supports the idea that they were created at least 10 billion to 12 billion years ago. According to the paper, during this time of intense star formation, billions of exploding stars created vast quantities of heavy elements in the alchemical furnaces of their own destruction. This was also the epoch when black holes in the hearts of galaxies were at their most energetic.

"The combined energy of these cosmic phenomena must have been strong enough to expel most of the metals from the galaxies at early times and to enrich and mix the intergalactic gas," said co-author and KIPAC graduate student Ondrej Urban.

To settle the question of whether the heavy elements created by supernovae remain mostly in their home galaxies or are spread out through intergalactic space, the researchers looked through the Perseus cluster in eight different directions. They focused on the hot, 10-million-degree gas that fills the spaces between galaxies and found the spectroscopic signature of iron reaching all the way to the cluster's edges.

The researchers estimate that the amount of iron in the cluster is roughly equivalent to the mass of 50 billion suns.

"We think most of the iron came from a single type of supernovae, called Type Ia supernovae," said former KIPAC member and co-author Aurora Simionescu, who is currently with the Japanese Aerospace Exploration Agency as an International Top Young Fellow.

In a Type Ia supernova, a star explodes and releases all its material to the void. The researchers believe that at least 40 billion Type Ia supernovae must have exploded within a relatively short period on cosmological time scales in order to release that much iron and have the force to drive it out of the galaxies.

The results suggest that the Perseus cluster is probably not unique and that iron – along with other heavy elements – is evenly spread throughout all massive galaxy clusters, said Steven Allen, a KIPAC associate professor and head of the research team.

"You are older than you think – or at least, some of the iron in your blood is older, formed in galaxies millions of light years away and billions of years ago," Simionescu said.

The researchers are now looking for iron in other clusters and eagerly awaiting a mission capable of measuring the concentrations of elements in the hot gas with greater accuracy.

"With measurements like these, the Suzaku satellite is having a profound impact on our understanding of how the largest structures in our universe grow," Allen said. "We're really looking forward to what further data can tell us."

The research was supported by the Japanese Aerospace Exploration Agency and by the US Department of Energy.

Lori Ann White is a writer at SLAC.

For more Stanford experts on physics and other topics, visit Stanford Experts.

Contact

Lori Ann White, SLAC Staff Writer: (650) 926-4897, law@slac.stanford.edu
Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Lori Ann White | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>