Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Standard at NSCL Provides Assurance of Quality to Users

16.10.2008
Michigan State University’s National Superconducting Cyclotron Laboratory has earned an important international certification indicating that the service it renders to the world’s nuclear scientists – namely rare isotope beams – meets rigorous international standards for quality.

Known as the ISO 9001 registration, it reflects international consensus on best practices for a range of business activities.

"The rare isotope beam quality we deliver to NSCL users is due to well-defined processes we have in place, not luck," said Thomas Glasmacher, professor of physics and associate director of operations at NSCL. "Our ISO 9001 registration reflects that reality, as well as our commitment to operate efficiently, continuously improve and focus on providing a high-quality experience to scientists who come here from around the world to run experiments."

The lab has earned similar registrations for its environmental management system (ISO 14001) and occupational health and safety system (OHSAS 18001). NSCL is the only university-based facility in the world to be registered as compliant with all three standards.

... more about:
»ISO 9001 »NSCL »isotope beam

More than 150 countries are members of the Geneva, Switzerland-based International Organization for Standardization, which issues the ISO standards. OHSAS 18001, a British standard designed to be compatible with ISO 9001 and IS0 14001, was written by several leading national standards bodies in the United States, the U.K., Australia and elsewhere.

Earning registration for each standard came only after a complex, 12- to 18-month process that included documentation, training, and multiple management reviews, which culminated in a multistep evaluation by an independent third-party auditor.

"For ISO 9001, the overall process was fairly straightforward," said Andreas Stolz, who heads the operations department at NSCL and serves as the management representative for NSCL's quality system. "That's because many of our existing business practices, including regularly surveying users and continuously improving our processes based on the feedback we received, were already fairly consistent with the standard."

An additional boon to users is expected in summer 2010, when NSCL is scheduled to start operations of a new low-energy linear accelerator to reaccelerate stopped beams of rare isotopes.

When the reaccelerator turns on, NSCL will be the only nuclear science facility in the world providing users with opportunities to study rare isotopes via fast, stopped and reaccelerated beams. The three capabilities are required in the next-generation U.S. laboratory for nuclear science, the Facility for Rare Isotope Beams, which the Department of Energy hopes to begin building next year.

The NSCL’s current five-year, $100 million operating grant, awarded in 2007 from the National Science Foundation, is the largest such grant in MSU's history.

A leading facility for rare isotope research and nuclear science education, the NSCL serves more than 700 researchers from 32 countries.

Geoff Koch | Newswise Science News
Further information:
http://www.nscl.msu.edu

Further reports about: ISO 9001 NSCL isotope beam

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>