Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The most stable laser in the world

17.09.2012
New silicon resonator keeps the frequency of a laser more stable than ever before - Important for even better optical atomic clocks

A laser with a frequency stability so far unequalled: This is the result of a research cooperation of the Physikalisch-Technische Bundesanstalt (PTB) within the scope of the Excellence Cluster QUEST (Centre for Quantum Engineering and Space-Time Research) with colleagues from the American NIST (National Institute of Standards and Technology)/JILA.


The size of the new silicon resonator compared to the size of a coin (Fig. PTB)

Their development, about which they report in the scientific journal "Nature Photonics", is important for optical spectroscopy with highest resolution, e.g. of ultra-cold atoms. But, above all, an even more stable interrogation laser is now available for use in optical atomic clocks.

Optical atomic clocks require laser sources that radiate light with an extremely constant frequency. Commercial laser systems are not suited for this purpose without additional measures. However, this can be achieved by stabilizing them, for example, with the aid of optical resonators. These are composed of two highly reflecting mirrors which are kept at a fixed distance by means of a spacer. The decisive aspect is the following: In analogy to an organ pipe, the resonator length determines the frequency with which light can begin to oscillate in the resonator. Consequently, a resonator with a high length stability is required for a stable laser, i.e. the distance between the mirrors must be kept as constant as possible.

Modern resonator-stabilized laser systems have meanwhile been technically developed to such an extent that their stability is only limited by the thermal noise of the resonators. Similar to the Brownian motion of molecules, the atoms in the resonator are constantly moving and are, thus, limiting its length stability. Up to now, resonators have been made of glass, whose disordered and "soft" material structure shows particularly strong movements.

For the new resonator, the research group has used single-crystal silicon, a particularly "stiff" and thus low-noise material. Cooled down to a temperature of 124 K (-149 degrees Celsius), silicon is characterized by an extremely small thermal expansion, and the remaining thermal noise is additionally reduced.

To operate the resonator at this temperature, the researchers had to design, first of all, a suitable low-vibration cryostat. The result is something to be proud of: Comparison measurements with two glass resonators allowed the scientists to demonstrate a frequency stability so far unequalled of 1 · 10-16 for the laser stabilized to the silicon resonator.

This allows them to remove an important obstacle in the development of even better optical atomic clocks, because the stability of the lasers used is a critical point. The "pendulum", i.e. the swinging system of such a clock, is a narrow optical absorption line in an atom or ion, whose transition frequency is read out by a laser. The linewidth of these transitions typically amounts to a few millihertz, a value which could not be reached by glass resonators due to their limited length stability.

But this is now possible. The laser to which the silicon resonator is stabilized reaches a linewidth of less than 40 mHz and can, thus, contribute to moving into a new dimension in the development of optical atomic clocks. This work could also benefit optical precision spectroscopy, another focal point of research of the Excellence Cluster QUEST.

"For the future, there is still room to improve the optical mirrors whose thermal noise limits the achievable stability", explains PTB physicist Christian Hagemann. Therefore, the researchers will in future go down to even lower temperatures and use novel highly reflecting structures to improve the frequency stability by another order of magnitude

Scientific publication

Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.J.; Chen, L.; Ye, J.:
A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics, DOI: 10.1038/nphoton.2012.217,

http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.217.html

Contact:

Christian Hagemann, PTB Working Group 4.32 "Quantum Optics with Cold Atoms",
phone: +49(0)531) 592-4357,
e-mail: christian.hagemann@ptb.de

Christian Hagemann | EurekAlert!
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>