Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stabilizing shell effects in heaviest elements directly measured

10.08.2012
Results will help to pin down the „Island of Stability“
An international research team has succeeded in directly measuring the strength of shell effects in very heavy elements. The results provide information on the nuclear structure of superheavy elements, thus promising to enable improved predictions concerning the location and extension of the island of stability of superheavy elements. Indeed, it is expected that this group of elements will profit from enhanced stability due to shell effects, which endow them with long lifetimes. The exact location of this island is still a topic of intense discussions.

For the present measurements, performed on several isotopes of the elements nobelium und lawrencium, the scientists utilized the Penning trap facility SHIPTRAP at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt. The results have been published in the renowned Science magazine.

So-called “superheavy” elements owe their very existence exclusively to shell effects within the atomic nucleus. The building blocks of an atomic nucleus, protons and neutrons, organize themselves in shells. Certain “magic” configurations with completely filled shells render the protons and neutrons to be more strongly bound together. Without this stabilizing effect atomic nuclei of superheavy elements would disintegrate in a split second due to the strong repulsion between their many protons.

Long-standing theoretical predictions suggest that in superheavy elements, filled proton and neutron shells will give rise to extraordinarily stable and hence long-lived nuclei: the “Island of stability“. Still, after decades of research, its exact location on the chart of nuclei is a topic of intense discussions and no consensus has yet been reached. While some theoretical models predict a magic proton number to be at element 114, others prefer element 120 or even 126. Another burning question is whether nuclei situated on the island will live “only“ hundreds or maybe thousands or even millions of years. Anyway, all presently known superheavy elements were created in the laboratory and are short-lived. No superheavy elements have been found in nature yet.

Precise information on the strength of shell effects that enhance binding energies of protons and neutrons for filled shells is a key ingredient for more accurate theoretical predictions. As the binding energy is directly related to the mass via Einstein’s famous equation E=mc2, the weighing of nuclei provides access to the nuclear binding energies and thus the strength of the shell effects. With the ion-trap facility SHIPTRAP, presently the most precise balance for weighing the heaviest elements, a series of very heavy atomic nuclei in the region of the magic neutron number N=152 have now been weighed with utmost precision for the first time. The studies at hand focused on nobelium (element 102) and lawrencium (element 103). These elements do not exist in nature, so the scientists produced them at the GSI’s particle accelerator facility and captured them in the SHIPTRAP. The measurements had to be performed with just a handful of atoms: for the isotope lawrencium-256 only about 50 could be studied during a measurement time of about four days.

The new data will benchmark the best present models for the heaviest atomic nuclei and provide an important stepping stone to further refining the models. This will lead to more precise predictions on the location and extension of the island of stability of superheavy elements.

The experiments were carried out by an international team led by scientists of GSI and the 2009 established Helmholtz-Institute Mainz (HIM), a joint institution of the GSI Helmholtz Center for Heavy Ion Research, Darmstadt, and the Johannes Gutenberg University Mainz, in collaboration with scientists from the universities of Giessen, Granada (Spain), Greifswald, Heidelberg, Mainz, Munich und Padua (Italy), as well as the Max-Planck-Institute for Nuclear Physics Heidelberg and the PNPI St. Petersburg (Russia).

Scientific Contacts:
Dr. Michael Block
GSI Helmholtz Centre for Heavy Ion Research
Planckstrasse 1
64291 Darmstadt
http://www.gsi.de

Prof. Dr. Christoph E. Düllmann
Helmholtz Institute Mainz and Institute for Nuclear Chemistry
Johannes Gutenberg University
55099 Mainz

http://www.helmholtz.de/en/research/promoting_research/helmholtz_
institutes/helmholtz_institute_mainz
http://www.kernchemie.uni-mainz.de/eng/index.php

Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
http://www.mpi-hd.mpg.de/

Prof. Dr. Lutz Schweikhard
Institute of Physics
Ernst-Moritz-Arndt-University Greifswald
17487 Greifswald
http://www.physik.uni-greifswald.de/physik01

Priv. Doz. Dr. Peter G. Thirolf
Department of Physics
Ludwig-Maximilians-University
Am Coulombwall 1
85748 Garching
http://www.en.physik.uni-muenchen.de/index.html

Dr. Wolfgang Plaß
II. Physics Institute
Justus-Liebig University
Heinrich-Buff-Ring 14
35392 Gießen
http://pcweb.physik.uni-giessen.de/exp2/
Weitere Informationen:

http://dx.doi.org/10.1126/science.1225636
E. Minaya Ramirez et al. “Direct mapping of nuclear shell effects in the heaviest elements”, Science 2012

Dr. Ingo Peter | idw
Further information:
http://www.gsi.de

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>