Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stabilizing shell effects in heaviest elements directly measured

Results will help to pin down the „Island of Stability“
An international research team has succeeded in directly measuring the strength of shell effects in very heavy elements. The results provide information on the nuclear structure of superheavy elements, thus promising to enable improved predictions concerning the location and extension of the island of stability of superheavy elements. Indeed, it is expected that this group of elements will profit from enhanced stability due to shell effects, which endow them with long lifetimes. The exact location of this island is still a topic of intense discussions.

For the present measurements, performed on several isotopes of the elements nobelium und lawrencium, the scientists utilized the Penning trap facility SHIPTRAP at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt. The results have been published in the renowned Science magazine.

So-called “superheavy” elements owe their very existence exclusively to shell effects within the atomic nucleus. The building blocks of an atomic nucleus, protons and neutrons, organize themselves in shells. Certain “magic” configurations with completely filled shells render the protons and neutrons to be more strongly bound together. Without this stabilizing effect atomic nuclei of superheavy elements would disintegrate in a split second due to the strong repulsion between their many protons.

Long-standing theoretical predictions suggest that in superheavy elements, filled proton and neutron shells will give rise to extraordinarily stable and hence long-lived nuclei: the “Island of stability“. Still, after decades of research, its exact location on the chart of nuclei is a topic of intense discussions and no consensus has yet been reached. While some theoretical models predict a magic proton number to be at element 114, others prefer element 120 or even 126. Another burning question is whether nuclei situated on the island will live “only“ hundreds or maybe thousands or even millions of years. Anyway, all presently known superheavy elements were created in the laboratory and are short-lived. No superheavy elements have been found in nature yet.

Precise information on the strength of shell effects that enhance binding energies of protons and neutrons for filled shells is a key ingredient for more accurate theoretical predictions. As the binding energy is directly related to the mass via Einstein’s famous equation E=mc2, the weighing of nuclei provides access to the nuclear binding energies and thus the strength of the shell effects. With the ion-trap facility SHIPTRAP, presently the most precise balance for weighing the heaviest elements, a series of very heavy atomic nuclei in the region of the magic neutron number N=152 have now been weighed with utmost precision for the first time. The studies at hand focused on nobelium (element 102) and lawrencium (element 103). These elements do not exist in nature, so the scientists produced them at the GSI’s particle accelerator facility and captured them in the SHIPTRAP. The measurements had to be performed with just a handful of atoms: for the isotope lawrencium-256 only about 50 could be studied during a measurement time of about four days.

The new data will benchmark the best present models for the heaviest atomic nuclei and provide an important stepping stone to further refining the models. This will lead to more precise predictions on the location and extension of the island of stability of superheavy elements.

The experiments were carried out by an international team led by scientists of GSI and the 2009 established Helmholtz-Institute Mainz (HIM), a joint institution of the GSI Helmholtz Center for Heavy Ion Research, Darmstadt, and the Johannes Gutenberg University Mainz, in collaboration with scientists from the universities of Giessen, Granada (Spain), Greifswald, Heidelberg, Mainz, Munich und Padua (Italy), as well as the Max-Planck-Institute for Nuclear Physics Heidelberg and the PNPI St. Petersburg (Russia).

Scientific Contacts:
Dr. Michael Block
GSI Helmholtz Centre for Heavy Ion Research
Planckstrasse 1
64291 Darmstadt

Prof. Dr. Christoph E. Düllmann
Helmholtz Institute Mainz and Institute for Nuclear Chemistry
Johannes Gutenberg University
55099 Mainz

Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg

Prof. Dr. Lutz Schweikhard
Institute of Physics
Ernst-Moritz-Arndt-University Greifswald
17487 Greifswald

Priv. Doz. Dr. Peter G. Thirolf
Department of Physics
Am Coulombwall 1
85748 Garching

Dr. Wolfgang Plaß
II. Physics Institute
Justus-Liebig University
Heinrich-Buff-Ring 14
35392 Gießen
Weitere Informationen:
E. Minaya Ramirez et al. “Direct mapping of nuclear shell effects in the heaviest elements”, Science 2012

Dr. Ingo Peter | idw
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>