Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeezed light from single atoms

30.06.2011
MPQ scientists generate amplitude-squeezed light fields using single atoms trapped inside optical cavities.

In classical optics light is usually described as a wave, but at the most fundamental quantum level this wave consists of discrete particles called photons. Over the time, physicists developed many tools to manipulate both the wave-like and the particle-like quantum properties of the light.


Fig.1: A single rubidium atom in a cavity squeezes the quantum fluctuations of a weak laser beam, decreasing the fluctuations of the amplitude at the expense of the phase. The effect is exaggerated for clarity.

For instance, they created single photon sources with single atoms, using their ability to absorb and emit photons one by one. A team around Professor Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics (Garching near Munich) and head of the Quantum Dynamics Division, has now observed that the light emitted by a single atom may exhibit much richer dynamics (Nature 474, 623, June 30, 2011). Strongly interacting with light inside a cavity, the atom modifies the wave-like properties of the light field, reducing its amplitude or phase fluctuations below the level allowed for classical electromagnetic radiation. This is the very first observation of “squeezed” light produced by a single atom.

The “graininess” of the photons in a light wave causes small fluctuations of the wave’s amplitude and phase. For classical beams, the minimal amount of amplitude and phase fluctuations is equal. However, by creating interactions between the photons, one can “squeeze” the fluctuations of the amplitude below this so-called “shot noise” level at the expense of increasing the fluctuations of the phase, and vice-versa. Unfortunately, the photonic interactions inside standard optical media are very weak, and require bright light beams to be observed. Single atoms are promising candidates to enable such interactions at a few-photon level. Their ability to generate squeezed light has been predicted 30 years ago, but the amount of light they emit is very tiny and so far all attempts to set this idea into realization have failed. In the Quantum Dynamics Division at MPQ sophisticated methods for cooling, isolating and manipulating single atoms have been developed over many years, and made this observation possible.

A single rubidium atom is trapped inside a cavity made of two very reflective mirrors in a distance of about a tenth of a millimetre from each other. When weak laser light is injected into this cavity, the atom can interact with one photon many times, and forms a kind of artificial molecule with the photons of the light field. As a consequence, two photons can enter the system at the same time and become correlated. “According to the model of Bohr, a single atom emits exactly one single energy quantum, i.e., one photon. That means that the number of photons is exactly known, but the phase of the light is not defined”, Professor Gerhard Rempe explains. “But the two photons that are emitted by this strongly coupled atom are indistinguishable and oscillate together. Therefore this time the wave-like properties of the propagating light field are modified.”

When the physicists use a laser beam which is resonant with the excitation frequency of the atom, the measurements show a suppression of the phase fluctuations. If the laser light is resonant with the cavity, they observe a squeezing of the amplitude instead.

The latter situation is illustrated in the figure: The atom in the cavity turns a laser beam into light which has less amplitude and more phase fluctuations than the shot-noise limit. “Our experiment shows that the light emitted by single atoms is much more complex than in the simple view of Albert Einstein concerning photo-emission”, Dr. Karim Murr emphasizes. “The squeezing that we observe is due to the coherent interaction between the two photons emitted from the system. Our measurement is in excellent agreement with the predictions of quantum electrodynamics in the strong-coupling regime.” And Dr. Alexei Ourjoumtsev, who has been working on the experiment as a post doc, adds: “Usually single quantum objects are used to manipulate the particle-like properties of light. It is interesting to see that they can also modify its wave-like properties, and create observable squeezing with excitations beams containing only two photons on average”.

So far squeezed light has only been generated with systems containing many atoms, such as crystals, using very high intensity beams, i.e. many photons. For the first time now physicists have succeeded in generating this kind of non-classical radiation with single atoms and extremely weak light fields. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters.

Original publication:
A. Ourjoumtsev, A. Kubanek, M. Koch, C. Sames, P. W. H. Pinkse, G. Rempe, & K. Murr
Observation of squeezed light from one atom excited with two photons
Nature 474, 623, 30 June 2011.
Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de
Dr. Karim Murr
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
e-mail: karim.murr@mpq.mpg.de
Dr. Alexei Ourjoumtsev
Laboratoire Charles Fabry de l’Institut d’Optique,
2 av. Augustin Fresnel, RD 128,
F-91127 Palaiseau, France
Phone : +33 1 64 53 33 82
e-mail: alexei.ourjoumtsev@institutoptique.fr

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: Division Max Planck Institute Optic Quantum laser beam laser light single atom

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>