Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Squeezed light from single atoms

MPQ scientists generate amplitude-squeezed light fields using single atoms trapped inside optical cavities.

In classical optics light is usually described as a wave, but at the most fundamental quantum level this wave consists of discrete particles called photons. Over the time, physicists developed many tools to manipulate both the wave-like and the particle-like quantum properties of the light.

Fig.1: A single rubidium atom in a cavity squeezes the quantum fluctuations of a weak laser beam, decreasing the fluctuations of the amplitude at the expense of the phase. The effect is exaggerated for clarity.

For instance, they created single photon sources with single atoms, using their ability to absorb and emit photons one by one. A team around Professor Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics (Garching near Munich) and head of the Quantum Dynamics Division, has now observed that the light emitted by a single atom may exhibit much richer dynamics (Nature 474, 623, June 30, 2011). Strongly interacting with light inside a cavity, the atom modifies the wave-like properties of the light field, reducing its amplitude or phase fluctuations below the level allowed for classical electromagnetic radiation. This is the very first observation of “squeezed” light produced by a single atom.

The “graininess” of the photons in a light wave causes small fluctuations of the wave’s amplitude and phase. For classical beams, the minimal amount of amplitude and phase fluctuations is equal. However, by creating interactions between the photons, one can “squeeze” the fluctuations of the amplitude below this so-called “shot noise” level at the expense of increasing the fluctuations of the phase, and vice-versa. Unfortunately, the photonic interactions inside standard optical media are very weak, and require bright light beams to be observed. Single atoms are promising candidates to enable such interactions at a few-photon level. Their ability to generate squeezed light has been predicted 30 years ago, but the amount of light they emit is very tiny and so far all attempts to set this idea into realization have failed. In the Quantum Dynamics Division at MPQ sophisticated methods for cooling, isolating and manipulating single atoms have been developed over many years, and made this observation possible.

A single rubidium atom is trapped inside a cavity made of two very reflective mirrors in a distance of about a tenth of a millimetre from each other. When weak laser light is injected into this cavity, the atom can interact with one photon many times, and forms a kind of artificial molecule with the photons of the light field. As a consequence, two photons can enter the system at the same time and become correlated. “According to the model of Bohr, a single atom emits exactly one single energy quantum, i.e., one photon. That means that the number of photons is exactly known, but the phase of the light is not defined”, Professor Gerhard Rempe explains. “But the two photons that are emitted by this strongly coupled atom are indistinguishable and oscillate together. Therefore this time the wave-like properties of the propagating light field are modified.”

When the physicists use a laser beam which is resonant with the excitation frequency of the atom, the measurements show a suppression of the phase fluctuations. If the laser light is resonant with the cavity, they observe a squeezing of the amplitude instead.

The latter situation is illustrated in the figure: The atom in the cavity turns a laser beam into light which has less amplitude and more phase fluctuations than the shot-noise limit. “Our experiment shows that the light emitted by single atoms is much more complex than in the simple view of Albert Einstein concerning photo-emission”, Dr. Karim Murr emphasizes. “The squeezing that we observe is due to the coherent interaction between the two photons emitted from the system. Our measurement is in excellent agreement with the predictions of quantum electrodynamics in the strong-coupling regime.” And Dr. Alexei Ourjoumtsev, who has been working on the experiment as a post doc, adds: “Usually single quantum objects are used to manipulate the particle-like properties of light. It is interesting to see that they can also modify its wave-like properties, and create observable squeezing with excitations beams containing only two photons on average”.

So far squeezed light has only been generated with systems containing many atoms, such as crystals, using very high intensity beams, i.e. many photons. For the first time now physicists have succeeded in generating this kind of non-classical radiation with single atoms and extremely weak light fields. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters.

Original publication:
A. Ourjoumtsev, A. Kubanek, M. Koch, C. Sames, P. W. H. Pinkse, G. Rempe, & K. Murr
Observation of squeezed light from one atom excited with two photons
Nature 474, 623, 30 June 2011.
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
Dr. Karim Murr
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
Dr. Alexei Ourjoumtsev
Laboratoire Charles Fabry de l’Institut d’Optique,
2 av. Augustin Fresnel, RD 128,
F-91127 Palaiseau, France
Phone : +33 1 64 53 33 82

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

Further reports about: Division Max Planck Institute Optic Quantum laser beam laser light single atom

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

More VideoLinks >>>