Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeezed light from single atoms

30.06.2011
MPQ scientists generate amplitude-squeezed light fields using single atoms trapped inside optical cavities.

In classical optics light is usually described as a wave, but at the most fundamental quantum level this wave consists of discrete particles called photons. Over the time, physicists developed many tools to manipulate both the wave-like and the particle-like quantum properties of the light.


Fig.1: A single rubidium atom in a cavity squeezes the quantum fluctuations of a weak laser beam, decreasing the fluctuations of the amplitude at the expense of the phase. The effect is exaggerated for clarity.

For instance, they created single photon sources with single atoms, using their ability to absorb and emit photons one by one. A team around Professor Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics (Garching near Munich) and head of the Quantum Dynamics Division, has now observed that the light emitted by a single atom may exhibit much richer dynamics (Nature 474, 623, June 30, 2011). Strongly interacting with light inside a cavity, the atom modifies the wave-like properties of the light field, reducing its amplitude or phase fluctuations below the level allowed for classical electromagnetic radiation. This is the very first observation of “squeezed” light produced by a single atom.

The “graininess” of the photons in a light wave causes small fluctuations of the wave’s amplitude and phase. For classical beams, the minimal amount of amplitude and phase fluctuations is equal. However, by creating interactions between the photons, one can “squeeze” the fluctuations of the amplitude below this so-called “shot noise” level at the expense of increasing the fluctuations of the phase, and vice-versa. Unfortunately, the photonic interactions inside standard optical media are very weak, and require bright light beams to be observed. Single atoms are promising candidates to enable such interactions at a few-photon level. Their ability to generate squeezed light has been predicted 30 years ago, but the amount of light they emit is very tiny and so far all attempts to set this idea into realization have failed. In the Quantum Dynamics Division at MPQ sophisticated methods for cooling, isolating and manipulating single atoms have been developed over many years, and made this observation possible.

A single rubidium atom is trapped inside a cavity made of two very reflective mirrors in a distance of about a tenth of a millimetre from each other. When weak laser light is injected into this cavity, the atom can interact with one photon many times, and forms a kind of artificial molecule with the photons of the light field. As a consequence, two photons can enter the system at the same time and become correlated. “According to the model of Bohr, a single atom emits exactly one single energy quantum, i.e., one photon. That means that the number of photons is exactly known, but the phase of the light is not defined”, Professor Gerhard Rempe explains. “But the two photons that are emitted by this strongly coupled atom are indistinguishable and oscillate together. Therefore this time the wave-like properties of the propagating light field are modified.”

When the physicists use a laser beam which is resonant with the excitation frequency of the atom, the measurements show a suppression of the phase fluctuations. If the laser light is resonant with the cavity, they observe a squeezing of the amplitude instead.

The latter situation is illustrated in the figure: The atom in the cavity turns a laser beam into light which has less amplitude and more phase fluctuations than the shot-noise limit. “Our experiment shows that the light emitted by single atoms is much more complex than in the simple view of Albert Einstein concerning photo-emission”, Dr. Karim Murr emphasizes. “The squeezing that we observe is due to the coherent interaction between the two photons emitted from the system. Our measurement is in excellent agreement with the predictions of quantum electrodynamics in the strong-coupling regime.” And Dr. Alexei Ourjoumtsev, who has been working on the experiment as a post doc, adds: “Usually single quantum objects are used to manipulate the particle-like properties of light. It is interesting to see that they can also modify its wave-like properties, and create observable squeezing with excitations beams containing only two photons on average”.

So far squeezed light has only been generated with systems containing many atoms, such as crystals, using very high intensity beams, i.e. many photons. For the first time now physicists have succeeded in generating this kind of non-classical radiation with single atoms and extremely weak light fields. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters.

Original publication:
A. Ourjoumtsev, A. Kubanek, M. Koch, C. Sames, P. W. H. Pinkse, G. Rempe, & K. Murr
Observation of squeezed light from one atom excited with two photons
Nature 474, 623, 30 June 2011.
Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de
Dr. Karim Murr
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
e-mail: karim.murr@mpq.mpg.de
Dr. Alexei Ourjoumtsev
Laboratoire Charles Fabry de l’Institut d’Optique,
2 av. Augustin Fresnel, RD 128,
F-91127 Palaiseau, France
Phone : +33 1 64 53 33 82
e-mail: alexei.ourjoumtsev@institutoptique.fr

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

Further reports about: Division Max Planck Institute Optic Quantum laser beam laser light single atom

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>