Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spintronics Discovery

10.05.2013
From powerful computers to super-sensitive medical and environmental detectors that are faster, smaller and use less energy — yes, we want them, but how do we get them?

In research that is helping to lay the groundwork for the electronics of the future, University of Delaware scientists have confirmed the presence of a magnetic field generated by electrons which scientists had theorized existed, but that had never been proven until now.

The finding, which is reported in the journal Nature Communications, expands the potential for harnessing the “spin” or magnetic properties of electrons — adding a fundamental new building block to the pioneering field of spintronics.

John Xiao, Unidel Professor of Physics and Astronomy at UD, is the lead author of the study. His co-authors include research associate Xin Fan, graduate students Jun Wu and Yunpeng Chen, and undergraduate student Matthew Jerry from UD, and Huaiwu Zhang from the University of Electronic Science and Technology of China.

Today’s semiconductors, which are essential to the operation of a broad array of electronics, carry along the electrical charge of electrons, but make no use of the magnetic or “spin” properties of these subatomic particles. Xiao and his team are working to unveil those properties in UD’s Center for Spintronics and Biodetection.

As Xiao explains, in the presence of a magnet, an electron will take a “spin up” or “spin down” position, correlating to the binary states of 1 or 0 that computers use to encode and process data. One spin state aligns with the magnetic field, and one opposes it. A spintronics device requires an excess number of either spin-up or spin-down electrons. Controlling the direction of the magnetization is a major goal in the fledgling field.

For the past few years, scientists have succeeded in generating a pure spin current in which electrons with opposite spins move in opposite directions. This is achieved by passing an electrical current through a heavy metal that’s not magnetic, such as platinum, tungsten and tantalum.

However, in a double layer of heavy metal and ferromagnetic material (for example, iron or cobalt), this pure spin current will diffuse into the ferromagnetic material. When this occurs, Xiao and his team have detected a magnetic field, which can switch the material’s magnetization.

This magnetic field is confined inside the ferromagnetic material unlike the conventional magnetic field generated from a magnet, which is difficult to shield. Xiao says this finding is particularly important to high-density integrated circuits, such as magnetic random access memory, in which shielding the magnetic field between cells is “a nightmare.”

“This magnetic field was predicted previously but was never experimentally confirmed. We demonstrated that it’s there,” Xiao says. “We now have a new means of generating a magnetic field and controlling the direction of a nanomagnet, as well as a new measurement technique to characterize the magnetic field.”

Advancing this nanoscale research requires specialized laboratory equipment and facilities. In addition to the sophisticated magnetometers in the Department of Physics and Astronomy at UD, Xiao and his team will have access to new, state-of-the-art facilities in the Interdisciplinary Science and Engineering Laboratory (ISE Lab), a 194,000-square-foot building set to open at UD this fall.

Among the core facilities in this major hub for teaching and research will be a 10,000-square-foot nanofabrication facility, which Xiao will co-direct. There, he will continue his research in the development of next-generation spintronic devices.

Funding for Xiao’s study was provided by the Department of Energy and the National Science Foundation.

Andrea Boyle Tippett | Newswise
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>