Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spinons - Confined like Quarks

30.11.2009
Phenomenon known from Particle Theory observed for the first time in Condensed Matter

The concept of confinement is one of the central ideas in modern physics. The most famous example is that of quarks which bind together to form protons and neutrons. Now Prof. Bella Lake from Helmholtz-Zentrum Berlin together with an international team of scientists report for the first time an experimental realization and a proof of confinement phenomenon observed in a condensed matter system.

The concept of confinement states that in certain systems the constituent particles are bound together by an interaction whose strength increases with increasing particle separation. In the case of quarks they are held together by the so called strong force, a force that grows stronger with increasing distance. As a consequence individual particles like quarks don't exist in a free state and their properties can be observed only indirectly.

In the 1990s Prof Alexei Tsvelik from Brookhaven National Laboratory (USA) and co-workers predicted an analogous confinement process in systems known as spin-ladders found in condensed matter physics. Experimental confirmation of this phenomenon has however only been achieved recently as described by Bella Lake et al in the current issue of the journal Nature Physics.

Spin-ladders consist of two chains of copper oxide chemically bonded together. This makes the electrons interact strongly with each other. A remarkable feature of a single chain is that the individual electrons, which behave as an elementary charge combined with magnetic spin, co-operate in concert to separate into independent spin and charge parts. Ac-cording to Bella Lake "The spin parts, known as spinons, have different properties to those of the original electrons. In fact they are analogous to quarks, the building blocks of protons and neutrons." On coupling two chains together to form a spin ladder the spin parts are found to recombine, but in a new way. "We have found, that excitations of individual chains, so called spinons, are confined in a similar way to that in which elementary quarks are held together", Bella Lake said.

The team of scientists have found evidence for the confinement idea by neutron scattering experiments on magnetic crystals of calcium cuprate (a copper-oxide material synthesized at the Leibniz Institute for Solid State and materials research in Dresden). The neutron experiments were performed using the MAPS spectrometer at the ISIS pulsed neutron source at Rutherford Appleton Laboratory, UK. Further the crystal and magnetic structure were investigated from neutron data collected on the E5 instrument at the research reactor BER II in Berlin.

The neutron scattering data show that the electrons essentially first split into spins and charges on the chains, then the spinons pair up again due to ladder effects. Prof Alan Tennant, the head of "Institute Complex Magnetic Materials" at HZB, explained: "The geometry of the ladder in fact plays a special role: the spinons always appear in pairs and when they move apart, they force a reorganisation of the intervening electrons that costs energy. The energy cost grows with separation - like a rubber band." According to Bella Lake "This strong pairing up of two spinons is like quarks binding together to form subatomic particles like hadrons and mesons."

Prof Alexei Tsvelik who developed the theoretical description explained "The formation of hadrons is well established on a qualitative level, but its quantitative aspects remain unresolved. It is unknown how to relate the theoretical parameters to the observed hadron masses. This is one of the reasons why condensed matter analogues are interesting. They provide examples of confinement for which detailed descriptions have been achieved."

Artikel in Nature Physics, DOI: 10.1038/NPHYS1462

Confinement of fractional quantum number particles in a condensed-matter system
Bella Lake, Alexei M. Tsvelik, Susanne Notbohm, D. Alan Tennant, Toby G. Perring, Manfred Reehuis, Chinna-thambi Sekar, Gernot Krabbes and Bernd Büchner

Berlin, den 25. 11.2009

Further informations:
Helmholtz-Zentrum Berlin
Hahn-Meitner-Platz 1
14109 Berlin
Prof. Bella Lake
Head of Junior Research Group
Magnetism an Superconductivity
Tel.: +49/30-8062-2058
bella.lake@helmholtz-berlin.de
Prof. Alan Tennant
Head of Institute Complex
Magnetic Materials
Tel.: +49/30-8062-2741
tennant@helmholtz-berlin.de
Press Office:
Dr. Ina Helms
Tel.: +49/30-8062-2034
ina.helms@helmholtz-berlin.de

Britta Heidrich | Helmholtz-Zentrum
Further information:
http://www.helmholtz-berlin.de/index_en.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>