Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin-polarized electrons on demand

16.01.2009
With a single electron pump, PTB researchers provide "counted" electrons with the desired spin

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits.

Different from electronics, where whole electrons are moved (the digital "one" means "an electron is present on the component", zero means "no electron present"), here it is a matter of manipulating a certain property of the electron, its spin.

For this reason, components are needed in which electrons can be injected successively into the electron, and one must be able to manipulate the spin of the single electrons, e.g. with the aid of magnetic fields. Both are possible with a single electron pump, as scientists of the Physikalisch-Technische Bundesanstalt (PTB) in Germany have, together with colleagues from Latvia, now shown. They will present their results in the current issue of Applied Physics Letters.

Electrons can do more than be merely responsible for current flow and digital information. If one succeeds in utilizing their spin, then many new possibilities would open up. The spin is an inner rotational direction, a quantum-mechanical property which is shown by a rotation around its own axis. An electron can rotate counterclockwise or clockwise. This generates a magnetic moment. One can regard the electron as a minute magnet in which either the magnetic North or South Pole "points upwards" (spin-up or spin-down condition). The electronic spins in a material determine its magnetic properties and are systematically controllable by an external magnetic field.

This is precisely the goal of spintronics (also called spin electronics): systemically control and manipulate single spins in nanometer-sized semiconductor components in order to thus utilize them for information processing. This would even have several advantages: The components would be clearly faster than those that are based on the transport of charges. Furthermore, the process would require less energy than a comparable charge transfer with the same information content. And with the value and direction of the expected spin value, further degrees of freedom would come into play, which could be used additionally for information representation.

In order to be able to manipulate the spins for information processing, it is necessary to inject the electrons singly with predefined spin into a semiconductor structure. This has now been achieved by researchers of the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig and the University of Latvia in Riga. In the current issue of the physics journal Applied Physics Letters, they present investigations of a so-called single electron pump.

This semiconductor device allows the ejection of exactly one single electron per clock cycle into a semiconductor channel. In the measurements presented it was shown for the first time that such a single electron pump can also be reliably operated in high magnetic fields. For sufficiently high applied fields, the pump then delivers exactly one single electron with predefined spin polarization per pumping cycle.

It thus delivers spin-polarized electrons virtually on demand. The robust design and the high achievable clock rate in the gigahertz range makes such a spin-polarized single electron pump a promising candidate especially also for future spintronic applications.

Imke Frischmuth | alfa
Further information:
http://www.ptb.de/

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>