Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin Manipulation Successful

22.04.2010
Ultrafast operation and high performance: This is what is expected of quantum computers. But there are still some obstacles to the technical implementation of this new type of computer. Physicists of the University of Würzburg report on their progress in this research area in "Nature Photonics".

"For the design of quantum computers, you need good quantum bits as information carriers," says physicist Martin Kamp. So what constitutes a good quantum bit? It must be able to assume several physical states which can be manipulated at will and last as long as possible.

Scientists around the world adopt a variety of different methods in order to obtain such building blocks of quantum computers. The Würzburg physicists and their cooperation partners in Japan and the United States focus their research on semiconductor nanostructures, called quantum dots. These solid state systems have the advantage of providing the possibility to integrate several quantum bits on one chip.

Spin manipulation with optical pulses

In the examined structures, each quantum dot contains an additional electron, whose so-called spin represents a quantum bit. In simplified terms, the spin corresponds to the intrinsic rotation of the electrons, which can be symbolically represented by means of an arrow. The quantum dots are located in a magnetic field, which defines a reference axis for the arrow. If the arrow points along this axis in one of two possible directions, the corresponding bit is classical in nature, i.e. of the type used by today's computers. In case of a quantum bit, however, all orientations in relation to the reference axis are relevant. Therefore, quantum bits can encode more information than classical bits, but they are also more susceptible to interferences that might lead to a change in orientation.

In the current edition of the scientific journal "Nature Photonics", the Würzburg physicists describe several possibilities to manipulate the orientation of a spin-state. "With optical pulses, you can set the spin to a clearly defined position," explains Sven Höfling of the Physics Department. However, the desired state is not of long duration; due to the interaction of the spin with the environment of the quantum dot, the information encoded in an individual spin state usually is lost within a matter of nanoseconds (billionths of a second). The task of overcoming this effect is considered to be one of the biggest challenges in the development of quantum computers.

Longer life-time of the desired spin-state

With a sophisticated method, the physicists have succeeded in significantly extending the life-time of the previously set spin state: They managed to keep it stable for several microseconds (millionths of a second). "Within this time frame, you can perform 100,000 operations on a quantum bit, which is quite acceptable for application in quantum computers," says Martin Kamp. This is possible because the use of ultra-short optical pulses allows an extremely fast manipulation of the spin states in the quantum dots.

"Our research shows that the individual spin quantum bits have a great potential for application in quantum computers or in cryptography as quantum memory elements for secure data transfer," the scientists conclude.

Interconnection of spin quantum bits as the next objective

The next objective of the physicists: to interconnect several quantum bits. In this process, they also intend to integrate the quantum bits in photonic networks, where signals are transmitted by means of optical pulses. The fact that these spin quantum bits can be integrated in such circuits is deemed to be of advantage for the further development of this technology.

"Ultrafast optical spin echo in a single quantum dot", David Press, Kristiaan De Greve, Peter L. McMahon, Thaddeus D. Ladd, Benedikt Friess, Christian Schneider, Martin Kamp, Sven Höfling, Alfred Forchel, Yoshihisa Yamamoto. Nature Photonics, published online 18 April 2010, doi:10.1038/nphoton.2010.83

Contact

Sven Höfling, phone +49 931 31-83613, sven.hoefling@physik.uni-wuerzburg.de
Martin Kamp, phone +49 931 31-85121, martin.kamp@physik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>