Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin liquids − back to the roots

22.06.2017

Researchers from Augsburg, Oxford, and Nanjing report in Nature Communications on a neutron experiment exposing experimental signatures of a low-temperature state predicted 44 years ago

Since 1973, Anderson's resonating valence bond model remains a paradigm for microscopic description of quantum spin liquids in frustrated magnets. It is of fundamental interest as a building unit for more complex quantum-mechanically entangled states that can be used in quantum computing.


Sketch of Anderson's resonating valence bond state formed by localized spins shown in green. The pair of opposite spins ("valence bond") is highlighted by a yellow oval.

© Universität Augsburg, EP VI/EKM

Researchers from the Chair of Experimental Physics VI/EKM report in Nature Communications first experimental signatures of excitations from this fundamental state exposed by a neutron-scattering study performed in collaboration with Rutherford Appleton Laboratory in Oxford and Renmin University of China.

Liquids entail haphazardly moving particles that can be correlated on the short-range scale, but lack any long-range order. In contrast to gases, liquids are only weakly compressible, because separations between their particles are small, and inter-particle interactions strong. A liquid-like state can also form in magnets, where electron spins act as individual particles.

Neighboring spins in a spin liquid strongly interact with each other, but evade long-range order, unlike, for example, in ferromagnets, where parallel alignment of spins throughout the crystal generates macroscopic magnetization that can drive rotation of the motor of an electric car or interact with Earth's magnetic field in a compass.

Spins are pairwise correlated, but remain disordered

Back in 1973 American physicist and eventual Nobel prize winner Philip W. Anderson contemplated a model, where spins are arranged on a triangular plane, and only adjacent spins (nearest neighbors) interact. These interactions trigger spins to be mutually antiparallel, but a global antiparallel (antiferromagnetic) configuration is prevented by the triangular arrangement.

The quantum-mechanical description proposed by Anderson is based on the idea of pair-wise correlations, where different pairs form, as shown in the Figure. In each pair, spins are opposite to each other forming resonating valence bonds (RVBs), the name used to emphasize close resemblance with chemical bonds between atoms in molecules and crystals.

The RVB state is quantum-mechanically entangled, it can not be represented by a simple combination of individual spins. Such entanglement opens new possibilities for high-performance calculations in a quantum computer. Despite far-reaching implications for present-day theories, the validity of Anderson's model of the RVB state was in the meantime questioned, and signatures of the RVB state were nowhere to be seen experimentally.

New substance with the triangular spin geometry

"The formation of Anderson's RVB state requires magnetic frustration, the presence of competing interactions between the spins" explains Dr. Alexander Tsirlin, the leader of the young research group at the Center for Electronic Correlations and Magnetism at the Institute of Physics in Augsburg.

This is made possible by a new substance, YbMgGaO4, that was prepared and investigated in collaboration with Renmin University of China and Rutherford Appleton Lab in Oxford, UK. The original chemical compound features regular triangular arrangement of magnetic moments, which are localized on the ytterbium atoms (see the Figure).

Earlier work by the team confirmed that even at temperatures of several hundredths of degree above the absolute zero spins remain dynamic in the form of a spin liquid evading long-range order, a pre-condition for building the long-sought RVB state.

Magnetic excitations follow predictions of Anderson's theory

Neutrons scatter from crystals changing direction and energy, and providing researchers with a sensitive probe of correlations between the spins. Neutron-scattering experiments on YbMgGaO4 reveal two distinct regimes. At higher transfer energies, where neutrons trigger high-energy excitations, experimental observations are in perfect agreement with Anderson's RVB model.

"After several decades, signatures of the nearest-neighbor RVB state have been finally observed", explains Prof. Dr. Philipp Gegenwart, head of the Chair of Experimental Physics VI / EKM. Less clear remains the experimental response at low energies, where Anderson's RVB picture fails. This part of the spectrum appears to be intertwined with magnetic interactions beyond Anderson's model, and may give researchers further clues as to why the RVB state has formed.


Publication

Yuesheng Li, Devashibhai Adroja, David Voneshen, Robert I. Bewley, Qingming Zhang, Alexander A. Tsirlin, and Philipp Gegenwart, Nearest-neighbor resonating valence bonds in YbMgGaO4, Nat. Commun. 8 (2017), 15814.

http://www.nature.com/articles/ncomms15814


Contact persons:

Prof. Dr. Philipp Gegenwart and Dr. Alexander Tsirlin
Chair of Experimental Physics VI / EKM
Institute of Physics / Center of Electronic Correlations and Magnetism
University of Augsburg
86135 Augsburg
Phone: +49(0)821/598‐3651
philipp.gegewart@physik.uni‐augsburg.de, alexander.tsirlin@physik.uni-augsburg.de

Weitere Informationen:

http://www.nature.com/articles/ncomms15814

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-augsburg.de/

Further reports about: Electronic Experimental Physics Spin bonds crystals liquids magnetism

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>