Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin lasers in the fast lane: RUB scientists develop new concept for ultrafast lasers

28.10.2011
Data transmission for the Internet of tomorrow

Electrical engineers in Bochum have succeeded in developing a new concept for ultrafast semiconductor lasers. The researchers make clever use of the intrinsic angular momentum of electrons, called spin, to successfully break the previous speed barriers.

The new spin lasers have the potential to achieve modulation frequencies of well above 100 GHz in future. This is a decisive step towards high-speed data transmission, e.g. for the Internet of tomorrow. The researchers report on their results in the prestigious journal “Applied Physics Letters” of the American Institute of Physics.

Optical data transmission: the basis of our information society

Optical data transmission by semiconductor lasers is a basic prerequisite for the globally networked world and today’s information society. The ever increasing degree of networking and the desire to exchange larger amounts of data are the driving force behind the development of ever faster optical data transmission systems. The maximum speed of conventional semiconductor lasers has long been a limiting factor - typical modulation frequencies are currently at levels well below 50 GHz.

Over 100 GHz possible: a barrier collapses

By using spin lasers, Bochum’s researchers were able to overcome the previous limits for the modulation speed. Whereas in conventional lasers, the spin of the electrons injected is entirely arbitrary, in spin lasers, only electrons with a previously determined spin state are used. By injecting these spin-polarised electrons, the laser is forced to work simultaneously on two laser modes with different frequencies. “This frequency difference can easily be tuned using the so-called birefringence in the resonator, for example by simply bending the microlaser” said Dr. Nils Gerhardt. By coupling the two laser modes in the microresonator, oscillation with a new frequency occurs, which can theoretically reach well over 100 GHz. The researchers around Dr. Gerhardt obtained their results in the collaborative research centre 491 of the Universities of Bochum and Duisburg-Essen (“Magnetic Heterostructures: Spin Structure and Spin Transport”).

Bibliographic record

N.C. Gerhardt, M.Y. Li, H. Jähme, H. Höpfner, T. Ackemann, and M.R. Hofmann: “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 99, 151107 (2011), DOI: 10.1063/1.3651339

Paper on the Internet: http://apl.aip.org/resource/1/applab/v99/i15/p151107_s1

Further information

Dr. Nils Gerhardt, Chair of Photonics and Terahertz Technology, Faculty of Electrical Engineering and Information Technology at the RUB, Tel. +49 234 32 26514, Nils.Gerhardt@rub.de

Chair of Photonics and Terahertz Technology:
http://www.ptt.rub.de
CRC 491:
http://www.ep4.ruhr-uni-bochum.de/sfb/
Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ep4.ruhr-uni-bochum.de/sfb/
http://www.ptt.rub.de

Further reports about: Electrical GHz Photonic Physic RUB Spin Terahertz information technology semiconductor lasers

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>