Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin lasers in the fast lane: RUB scientists develop new concept for ultrafast lasers

28.10.2011
Data transmission for the Internet of tomorrow

Electrical engineers in Bochum have succeeded in developing a new concept for ultrafast semiconductor lasers. The researchers make clever use of the intrinsic angular momentum of electrons, called spin, to successfully break the previous speed barriers.

The new spin lasers have the potential to achieve modulation frequencies of well above 100 GHz in future. This is a decisive step towards high-speed data transmission, e.g. for the Internet of tomorrow. The researchers report on their results in the prestigious journal “Applied Physics Letters” of the American Institute of Physics.

Optical data transmission: the basis of our information society

Optical data transmission by semiconductor lasers is a basic prerequisite for the globally networked world and today’s information society. The ever increasing degree of networking and the desire to exchange larger amounts of data are the driving force behind the development of ever faster optical data transmission systems. The maximum speed of conventional semiconductor lasers has long been a limiting factor - typical modulation frequencies are currently at levels well below 50 GHz.

Over 100 GHz possible: a barrier collapses

By using spin lasers, Bochum’s researchers were able to overcome the previous limits for the modulation speed. Whereas in conventional lasers, the spin of the electrons injected is entirely arbitrary, in spin lasers, only electrons with a previously determined spin state are used. By injecting these spin-polarised electrons, the laser is forced to work simultaneously on two laser modes with different frequencies. “This frequency difference can easily be tuned using the so-called birefringence in the resonator, for example by simply bending the microlaser” said Dr. Nils Gerhardt. By coupling the two laser modes in the microresonator, oscillation with a new frequency occurs, which can theoretically reach well over 100 GHz. The researchers around Dr. Gerhardt obtained their results in the collaborative research centre 491 of the Universities of Bochum and Duisburg-Essen (“Magnetic Heterostructures: Spin Structure and Spin Transport”).

Bibliographic record

N.C. Gerhardt, M.Y. Li, H. Jähme, H. Höpfner, T. Ackemann, and M.R. Hofmann: “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers”, Appl. Phys. Lett. 99, 151107 (2011), DOI: 10.1063/1.3651339

Paper on the Internet: http://apl.aip.org/resource/1/applab/v99/i15/p151107_s1

Further information

Dr. Nils Gerhardt, Chair of Photonics and Terahertz Technology, Faculty of Electrical Engineering and Information Technology at the RUB, Tel. +49 234 32 26514, Nils.Gerhardt@rub.de

Chair of Photonics and Terahertz Technology:
http://www.ptt.rub.de
CRC 491:
http://www.ep4.ruhr-uni-bochum.de/sfb/
Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ep4.ruhr-uni-bochum.de/sfb/
http://www.ptt.rub.de

Further reports about: Electrical GHz Photonic Physic RUB Spin Terahertz information technology semiconductor lasers

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>