Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speeding up electronics to light frequencies

06.12.2012
New results on the interaction of femto- and attosecond light pulses with a solid insulator hold promise for reaching electronic switching rates up to the petahertz domain.

Modern information processing allows for breathtaking switching rates of about a 100 billion cycles per second. New results from the Laboratory for Attosecond Physics (LAP) of Prof. Ferenc Krausz (Max Planck Institute of Quantum Optics (MPQ), Garching, and Ludwig-Maximilians-Universität Munich) could pave the way towards signal processing several orders of magnitude faster.


Figure 1: Measurement of electric currents induced by the electric field of light : The proof-of-principle study of Schiffrin et al. was performed on a small silica-glass prism, coated on two sides with gold electrodes with a 50 nanometre wide gap in between. In order to investigate the field-induced electric current the scientists exposed the sample to the strong few-cycle field of a pulse for "mobilizing" electrons and then drove the mobilized electrons towards one of the two electrodes with the field of a time-delayed second (weaker) laser pulse. Varying the delay of the second pulse with respect to the first pulse results in a current in the external circuit with varying direction. The current turns around each time the delay is increased by half the oscillation period of the laser field, indicating that "mobilisation" must occur within a time window of a femtosecond. Illustration: Christian Hackenberger, LMU


Figure 2: Attosecond real-time observation of changes in the electronic properties of a dielectric induced by the oscillating field of light : A nanometric thin silica-glass film (black frame in the centre of picture) is exposed to intense few-femto-second light pulses (red). The strong field of the light pulse changes the electronic states in the glass, with each cycle of its oscillation. These variations are tracked in real time by a series of "snapshots" recorded by attosecond light pulses (blue) passed through the sample at different instants delayed with respect to the intense excitation pulse. The recorded attosecond snaps of the instantaneous state of the electronic system of the probed sample; from these snaps the field-induced changes can be reconstructed in "slow-motion replay". Photo: Thorsten Naeser, LMU

In two groundbreaking complementary experiments a collaboration led by LAP-physicists has demonstrated that, under certain conditions, ultrashort light pulses of extremely high intensity can induce electric currents in otherwise insulating dielectric materials (Nature, AOP, 5 December 2012).

Furthermore, they provided evidence that the fast oscillations of the electric field instantly alter the electrical and optical properties of the material, and that these changes can be reversed on a femtosecond (10to the-15 s) time scale (Nature, same issue). This opens the door for signal processing rates reaching the petahertz (1015 Hz) domain, about 10,000 times faster than it is possible with the best state-of-the-art solid state microchips. The experiments were carried out by researchers from MPQ, LMU, and Technische Universität München, in close cooperation with the theoretical group of Prof. Mark Stockman (Georgia State University, Atlanta, USA).

Materials can be grouped in three categories according to their electric properties: metals provide free charge carriers, i.e. electrons, under any conditions, and therefore conduct electricity when exposed to even small electric fields. In semiconductors, on the other hand, the charge carriers require a certain 'energy kick' before they are able to move around. This is why semiconductors are very well suited as the basic material for electronic switching components in which the digits "0" and "1" are represented by an "on" or "off" current, respectively. The best silicon-based semiconductor components available today allow switching between these two states several billion times per second, i.e. at gigahertz-rates (1 GHz = 10to the 9 Hz). This corresponds to the frequency of microwaves.

The third group of materials are so-called dielectrics. Here, the electrons are more or less immobile, therefore, dielectrics are insulators under normal conditions; at very low electric fields they don’t conduct electric current, whereas at high static fields they suffer irreversible damage. The team of Prof. Krausz now took interest in the question of how such materials would respond to very high and (usually) destructive fields that act on it for just a tiny moment. To this way they used a special tool: very short and intensive laser pulses of visible/near-infrared light with a duration of a few femtoseconds (1 fs is a millionth of a billionth of a second), which contain only a couple of cycles with a perfectly controlled waveform. In these pulses, the amplitude of the oscillating electric field increases from moderate values to more than 10 billion Volts per metre extremely rapidly, within a few femtoseconds.

In the first experiment [1] the scientists investigated whether these light pulses would cause dielectrics to conduct electric currents at all. Their test object was a small silica-glass prism, coated on two sides with gold electrodes with a 50 nanometre wide gap in between. After irradiating the prism with the intense few-femtosecond pulses, an electric current was measured between the electrodes. "Two effects are contributing to this result", Tim Paasch-Colberg explains, who worked on this experiment as a doctoral candidate. "On the one hand the strong electric field of one pulse enhances the mobility of the electrons. On the other hand, the appropriately directed weaker field of a second pulse pushes the mobilised electrons towards the gold electrodes." The experiments revealed that the electric current changes its direction as the weak (driving) field is delayed by half a wave period (about 1.2 fs) with respect to the strong (mobilizing) field (see figure 1). "This behaviour is a strong indication that the material is turned from an insulator into a conductor by the strong light field within less than a femtosecond," Tim Paasch-Colberg says. "However, from these observations we cannot yet conclude that the conductivity can also be switched off within the same time scale, which is a precondition for the effect being utilized for signal processing."

To answer this question, a second experiment [2] explored the underlying electronic processes. This time, the material, in form of a thin film, was exposed to the same pulses. The extremely fast variations of the electronic properties caused by the strong field were tracked in real time with LAP’s unique tool: flashes of extreme ultraviolet light shorter than 100 attoseconds (1 as is a billionth of a billionth of a second, a thousand times shorter than a femtosecond) (see figure 2). "Our results show that the field-induced changes follow, in a highly nonlinear fashion, both the turn-on and the turn-off behaviour of the driving laser field, and thus they clearly point to the reversibility of the field-induced effects," Elisabeth Bothschafter, doctoral candidate at the experiment, explains. And Dr. Martin Schultze, leading these experiments and currently on leave at the University of California at Berkeley, adds: "It is stunning that basic material properties can be manipulated, increased and decreased, at the speed of light field oscillations."

Both sets of experiments can be described with one and the same microscopic model developed by Vadym Apalkov and Mark Stockman, which explains – based on quantum mechanics – the underlying physical processes and supports the conclusion of full reversibility of the observed light-induced changes. "Our work demonstrates how state-of-the-art photonic techniques may explore ways of pushing the frontiers of information processing," says Agustin Schiffrin, leading the first project and currently researcher at the University of British Columbia (Vancouver, Canada). Professor Krausz, head of the Laboratory for Attosecond Physics, likes to put these measurements into a larger context: "We hope that these results provide motivation for other groups worldwide to join us in exploring and exploiting the potential wide-gap materials may offer for speeding up electronics."
Olivia Meyer-Streng

Original publications:
1) Agustin Schiffrin, Tim Paasch-Colberg, Nicholas Karpowicz, Vadym Apalkov, Daniel Gerster, Sascha Mühlbrandt, Michael Korbman, Joachim Reichert, Martin Schultze, Simon Holzner, Johannes V. Barth, Reinhard Kienberger, Ralph Ernstorfer, Vladislav S. Yakovlev, Mark I. Stockman, and Ferenc Krausz
Optical-field-induced current in dielectrics
Nature, Advanced Online Publication, 5 December 2012, DOI: 10.1038/nature11567

2) Martin Schultze, Elisabeth M. Bothschafter, Annkatrin Sommer, Simon Holzner, Wolfgang Schweinberger, Markus Fiess, Michael Hofstetter, Reinhard Kienberger, Vadym Apalkov, Vladislav S. Yakovlev, Mark I. Stockman, and Ferenc Krausz
Controlling dielectrics with the electric field of light
Nature, Advanced Online Publication, 5 December 2012, DOI: 10.1038/nature11720

Contact:
Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics, Garching
Phone: +49 (0) 89 / 32 905 -213
Fax: +49 (0) 89 / 32 905 -200
E-mail: olivia.meyer-streng@mpq.mpg.de

Prof. Ferenc Krausz
Chair of Experimental Physics, Ludwig-Maximilians-Universität München
Director at the Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0) 89 / 32 905 -600
Fax: +49 (0) 89 / 32 905 -649
E-mail: krausz@lmu.de
www.attoworld.de

Prof. Mark Stockman
Chair of Theoretical Physics
Department of Physics and Astronomy
Georgia State University
29 Peachtree Center Ave.
Atlanta, GA 30302, USA
Phone: +1-678-457-4739
E-mail: mstockman@gsu.edu

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>