Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spanish scientists produce the smoothest surface ever created

A team of physicists from the Autonomous University of Madrid (UAM) and the Madrid Institute of Advanced Studies in Nanoscience (IMDEA-Nanociencia) has created the “quantum stabilised atom mirror”, the smoothest surface ever, according to this week's edition of Advanced Materials magazine.

The innovation is already being used in the design of the world's first atomic microscope.

One of the study's authors, Rodolfo Miranda, professor of condensed matter physics at the UAM and director of the IMDEA-Nanociencia, explained to SINC that the innovation with this almost perfect mirror is the ability to reflect “extraordinarily well” most of the atoms that affect it, through the use of materials of nanometric thickness whose properties are dominated by quantum effects.

The mirror resembles a curved wafer. It is made up of a thin silicon crystal with a thickness of 50 microns, and covered with a very fine layer of lead, 1 or 2 nanometres thick. To study the reflection on this metal, the scientists used helium atoms. Until now mirrors made solely from silicon reflected 1% of helium atoms, but by adding the layer of lead they have managed to achieve a reflection of up to 67%.

The lead is deposited on the silicon at a temperature of between -173º and -133º C which, together with the nanometric thickness of the lead, allows its quantum properties to “come to the surface”, and, in an “astonishing and spontaneous” way, bumps on the surface become evened out and a super flat layer is created. “The extraordinary thing about this process is that when the material is heated to room temperature, it does not distort or break, but instead becomes even flatter, enhancing its reflection properties”, Miranda indicated.

These types of mirrors are vital for manufacturing future atomic microscopes. Until now electronic microscopes have achieved the highest resolutions when it comes to viewing objects, but with the disadvantage that the accelerated electrons they use destroy the most delicate biological samples, such as cell membranes or certain protein structures. “With atomic microscopes we hope to achieve the same resolution but without damaging samples”, said the professor of physics.

Miranda pointed out that atoms have a much greater mass than electrons, “which is why we can achieve the same wavelength with far lower energy, allowing us to observe things as small as those observed with an electronic microscope, but without destroying what we are viewing”.

The Spanish researchers, together with the team led by Bill Allison at the University of Cambridge (United Kingdom) and Bodil Holst at the University of Graz (Austria), are now working with the first prototypes of atomic microscopes that use quantum stabilised mirrors, and are confident that the first images obtained with them will be ready next year.

To contact the researcher: Rodolfo Miranda - Departamento de Física de la Materia Condensada (Universidad Autónoma de Madrid) / Instituto Madrileño de Estudios Avanzados en Nanociencia. Teléfonos: 914 976 849 / 914974737


SINC Team | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>