Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists produce the smoothest surface ever created

23.09.2008
A team of physicists from the Autonomous University of Madrid (UAM) and the Madrid Institute of Advanced Studies in Nanoscience (IMDEA-Nanociencia) has created the “quantum stabilised atom mirror”, the smoothest surface ever, according to this week's edition of Advanced Materials magazine.

The innovation is already being used in the design of the world's first atomic microscope.

One of the study's authors, Rodolfo Miranda, professor of condensed matter physics at the UAM and director of the IMDEA-Nanociencia, explained to SINC that the innovation with this almost perfect mirror is the ability to reflect “extraordinarily well” most of the atoms that affect it, through the use of materials of nanometric thickness whose properties are dominated by quantum effects.

The mirror resembles a curved wafer. It is made up of a thin silicon crystal with a thickness of 50 microns, and covered with a very fine layer of lead, 1 or 2 nanometres thick. To study the reflection on this metal, the scientists used helium atoms. Until now mirrors made solely from silicon reflected 1% of helium atoms, but by adding the layer of lead they have managed to achieve a reflection of up to 67%.

The lead is deposited on the silicon at a temperature of between -173º and -133º C which, together with the nanometric thickness of the lead, allows its quantum properties to “come to the surface”, and, in an “astonishing and spontaneous” way, bumps on the surface become evened out and a super flat layer is created. “The extraordinary thing about this process is that when the material is heated to room temperature, it does not distort or break, but instead becomes even flatter, enhancing its reflection properties”, Miranda indicated.

These types of mirrors are vital for manufacturing future atomic microscopes. Until now electronic microscopes have achieved the highest resolutions when it comes to viewing objects, but with the disadvantage that the accelerated electrons they use destroy the most delicate biological samples, such as cell membranes or certain protein structures. “With atomic microscopes we hope to achieve the same resolution but without damaging samples”, said the professor of physics.

Miranda pointed out that atoms have a much greater mass than electrons, “which is why we can achieve the same wavelength with far lower energy, allowing us to observe things as small as those observed with an electronic microscope, but without destroying what we are viewing”.

The Spanish researchers, together with the team led by Bill Allison at the University of Cambridge (United Kingdom) and Bodil Holst at the University of Graz (Austria), are now working with the first prototypes of atomic microscopes that use quantum stabilised mirrors, and are confident that the first images obtained with them will be ready next year.

To contact the researcher: Rodolfo Miranda - Departamento de Física de la Materia Condensada (Universidad Autónoma de Madrid) / Instituto Madrileño de Estudios Avanzados en Nanociencia. Teléfonos: 914 976 849 / 914974737

E-mail: rodolfo.miranda@uam.es

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>