Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists produce the smoothest surface ever created

23.09.2008
A team of physicists from the Autonomous University of Madrid (UAM) and the Madrid Institute of Advanced Studies in Nanoscience (IMDEA-Nanociencia) has created the “quantum stabilised atom mirror”, the smoothest surface ever, according to this week's edition of Advanced Materials magazine.

The innovation is already being used in the design of the world's first atomic microscope.

One of the study's authors, Rodolfo Miranda, professor of condensed matter physics at the UAM and director of the IMDEA-Nanociencia, explained to SINC that the innovation with this almost perfect mirror is the ability to reflect “extraordinarily well” most of the atoms that affect it, through the use of materials of nanometric thickness whose properties are dominated by quantum effects.

The mirror resembles a curved wafer. It is made up of a thin silicon crystal with a thickness of 50 microns, and covered with a very fine layer of lead, 1 or 2 nanometres thick. To study the reflection on this metal, the scientists used helium atoms. Until now mirrors made solely from silicon reflected 1% of helium atoms, but by adding the layer of lead they have managed to achieve a reflection of up to 67%.

The lead is deposited on the silicon at a temperature of between -173º and -133º C which, together with the nanometric thickness of the lead, allows its quantum properties to “come to the surface”, and, in an “astonishing and spontaneous” way, bumps on the surface become evened out and a super flat layer is created. “The extraordinary thing about this process is that when the material is heated to room temperature, it does not distort or break, but instead becomes even flatter, enhancing its reflection properties”, Miranda indicated.

These types of mirrors are vital for manufacturing future atomic microscopes. Until now electronic microscopes have achieved the highest resolutions when it comes to viewing objects, but with the disadvantage that the accelerated electrons they use destroy the most delicate biological samples, such as cell membranes or certain protein structures. “With atomic microscopes we hope to achieve the same resolution but without damaging samples”, said the professor of physics.

Miranda pointed out that atoms have a much greater mass than electrons, “which is why we can achieve the same wavelength with far lower energy, allowing us to observe things as small as those observed with an electronic microscope, but without destroying what we are viewing”.

The Spanish researchers, together with the team led by Bill Allison at the University of Cambridge (United Kingdom) and Bodil Holst at the University of Graz (Austria), are now working with the first prototypes of atomic microscopes that use quantum stabilised mirrors, and are confident that the first images obtained with them will be ready next year.

To contact the researcher: Rodolfo Miranda - Departamento de Física de la Materia Condensada (Universidad Autónoma de Madrid) / Instituto Madrileño de Estudios Avanzados en Nanociencia. Teléfonos: 914 976 849 / 914974737

E-mail: rodolfo.miranda@uam.es

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>