Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish and US scientists develop a new technique that allows certain objects to be invisible to the human eye

15.09.2008
A research group of the Departments of Applied Physics and Electromagnetism of the University of Granada(Spain), directed by Professors Jorge Andrés Portí, Alfonso Salinas and Juan Antonio Morente, have taken a step forward with regard to one of mankind’s biggest dreams and challenges, often tackled by fiction writers and film makers: invisibility.

Scientists of the UGR have managed, by means of a numerical technique known as Transmission Line Matrix (TLM) Modelling method, to hide an object or make it invisible in a certain frequency, inside an electromagnetic simulator. Such studies are the germ to achieve invisibility to radars and even to the human eye.

This relevant scientific work has been carried out in collaboration with researchers of the Massachusetts Institute of Technology, and has been recently published in two papers in the prestigious journal Optics Express, the journal with a higher impact index of the Optics group in the Journal Citation Reports. This research work is part of the doctoral thesis carried out by Cedric Blanchard, another researcher of the UGR who is finishing off his education in the United States.

According to the scientists of the University of Granada, the growing interest for electromagnetic invisibility has been partly driven, in the last years, by the existence of powerful computer resources that allow to carry out specific numerical studies of such phenomenon, avoiding the use of commercial software unadjusted to the new research works.

A new technique

This research work has developed a new condensed TLM node to model meta-materials and has managed to make invisible certain objects in conditions difficultly reachable when using commercial software.

The researchers have proposed a TLM simulation of hiding structures, composed of alternating isotropic layers, imitating an anisotropic frame. They had previously implemented a new technique to simulate meta-materials with the TLM method.

"This new prospect -the authors of the project say- leaves the usual TLM process virtually untouched; specifically, the delivery matrix is exactly the same used in classic environments, which provides a lot of flexibility when it comes to program". This way, this research has proved that it is possible to improve the effectiveness of hiding if the electromagnetic parameters of the frame are judiciously chosen.

Reference:
Prof. Jorge Andrés Portí Durán.
Department of Applied Physics of the University of Granada.
Phone number: +34 958 249 098. E-mail: jporti@ugr.es
Prof. Juan Antonio Morente Chiquero.
Department of Applied Physics of the University of Granada.
Phone number: +34 958 243 229. E-mail: jmorente@ugr.es

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/verNota/prensa.php?nota=555

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>