Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spacecraft will enable scientists to study space environment around moon, Earth

29.10.2010
Two spacecraft are now beginning to study the moon's environment as part of NASA's ARTEMIS mission, whose principal investigator is Vassilis Angelopoulos, a UCLA professor of Earth and space sciences.
One of these satellites has been in the lunar environment since Aug. 25, and the second arrived Oct. 22, marking the start of the ARTEMIS mission to gather new scientific data in the sun-Earth-moon environment.

ARTEMIS is an acronym for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun.

For roughly six months, the two satellites will fly in orbits behind the moon but will not orbit the moon itself. This type of orbit relies on a precise balancing of sun, Earth and moon gravity. Then, in April 2011, the spacecraft are scheduled to make elliptical orbits around the moon, each providing data every second day for several years or longer.

ARTEMIS will use simultaneous measurements of particles and electric and magnetic fields from the satellites to provide the first three-dimensional perspective of how energetic particle acceleration occurs near the moon's orbit, in the distant magnetosphere and in the solar wind. ARTEMIS will also make unique observations of the space environment behind the dark side of the moon — the greatest known vacuum in the solar system.

"We will study the space environment around the Earth and around the moon, which are not well understood," Angelopoulos said. "ARTEMIS will provide unprecedented data and will go where no spacecraft have gone before.

"In collaboration with NASA's Jet Propulsion Laboratory and UC Berkeley, we are flinging the satellites into interplanetary space to the point where the Earth's gravity and moon's gravity are approximately equal. ARTEMIS will also provide new operational data, which will help NASA plan future moon missions. NASA engineers and mission planners will gain valuable knowledge as a result."

ARTEMIS is an offspring of the five-satellite NASA mission known as THEMIS (Time History of Events and Macroscale Interactions during Substorms), for which Angelopoulos is also the principal investigator. ARTEMIS, which redirects two of the THEMIS satellites to the moon, will study the space environment farther from Earth than THEMIS was ever designed to do, Angelopoulos noted.

"The space environment is very different that far away from the inner magnetosphere because it is not affected much by the Earth's strong magnetic field," he said. "It is a pure environment in which we can understand fundamental phenomena like magnetic reconnection, particle acceleration and turbulence, which are all very hard to study in the laboratory. Magnetic reconnection, particle acceleration and turbulence are important because they are a means of converting magnetic energy into particle energy, and they operate in many other environments, such as fusion machines and distant stars.

"In astrophysics, there are many places where magnetic reconnection, particle acceleration and turbulence take place. We can infer them only from the light they produce from some of the most violent explosions that occur in the universe — from X-rays and gamma rays in pulsars, for example. Magnetic fields interact and often create, through reconnection, the expulsion of jets releasing enormous amounts of energy away from black holes, into space.

"We expect to learn fundamentally how magnetic reconnection and turbulence work in three dimensions," he added. "We need to understand the way particle interactions with electromagnetic fields take place in that pristine region of space. ARTEMIS is uniquely instrumented to study this problem."

A vacuum is created behind the moon, Angelopoulos noted, as the solar wind goes by, and the solar wind is absorbed by the moon. ARTEMIS will study how magnetized bodies interact with the solar wind.

ARTEMIS represents a joint effort between UCLA; UC Berkeley; NASA's Goddard Space Flight Center in Greenbelt, Md.; and the JPL. Several UCLA space scientists, from three separate departments, are involved in the mission.

The THEMIS mission has three additional satellites with electric, magnetic, ion and electron detectors that remain in carefully choreographed orbits around the Earth, as well as an array of 20 ground observatories with automated, all-sky cameras located in the northern U.S. and Canada that catch substorms as they happen.

As the THEMIS satellites are measuring the magnetic and electric fields of the plasma above Earth's atmosphere and the ARTEMIS satellites record the distant effects of these phenomena as far as the moon, the ground-based observatories are continuing to image the auroral lights and the electrical currents in space that generate them.

THEMIS was launched Feb. 17, 2007, from Cape Canaveral, Fla., to impartially resolve the trigger mechanism of substorms. Themis was the blindfolded Greek goddess of order and justice. Artemis was the goddess of the moon in ancient Greek mythology. THEMIS and ARTEMIS are managed by the Explorers Program Office at NASA's Goddard Space Flight Center.

Soon after their launch, the THEMIS probes discovered a cornucopia of previously unknown phenomena, including colliding auroras, magnetic spacequakes and plasma bullets shooting up and down Earth's magnetic tail. This has allowed researchers to solve several longstanding mysteries of the aurora borealis, or "northern lights."

In 2008, Angelopoulos and THEMIS colleagues identified the mechanism that triggers substorms in space, wreaking havoc on satellites, power grids and communications systems and leading to the explosive release of energy that causes the spectacular brightening of the aurora borealis.

For more information on the THEMIS mission, visit http://themis.ssl.berkeley.edu/ and www.nasa.gov/themis.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu
http://newsroom.ucla.edu/portal/ucla/spacecraft-will-enable-scientists-177287.aspx

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>