Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space weather prediction model improves NOAA’s forecast skill

21.10.2011
NOAA is now using a sophisticated forecast model that substantially improves predictions of space weather impacts on Earth. Better forecasts offer additional protection for people and the technology-based infrastructure we use daily.

Explosions in the sun’s outer atmosphere – tracked and forecast by NOAA scientists – can cause geomagnetic and solar radiation storms at Earth that can impede the operation of electrical power grids, interfere with the normal function of Global Positioning Systems and temporarily hamper radio and satellite telecommunications. Grid and satellite operators and airlines can take protective measures when stormy conditions are forecast.


An X-ray image of the Sun from August 5, captured by a NOAA satellite. Three successive coronal mass ejections - big blasts of plasma from the Sun - exploded from a bright region near far right (circled in additional image). Impacts on Earth were minimal: temporary high-frequency radio outages in a few regions, minor distortion of global positioning system signals and no known power outages or satellite damage. (Credit: NOAA)

“This advanced model has strengthened forecasters’ understanding of what happens in the 93 million miles between Earth and the sun following a solar disturbance,” said Tom Bogdan, director of NOAA’s Space Weather Prediction Center in Boulder, Colo. “It will help power grid and communications technology managers know what to expect so they can protect infrastructure and the public.”

Magnetic storms can occur on Earth 1–4 days after a coronal mass ejection – a burst of charged particles and magnetic field that streams out from the sun at more than one million miles an hour. Before development of this model, forecasters could predict timing of such impacts within a 30-hour window, on average. The new model allows forecasters to narrow that window to 12 hours.

That improvement gives airline operators more reliable information about when to reroute flights to avoid communications blackouts from storms. Satellite operators can avoid changing orbit or orientation when space weather threatens. Oil drilling, mining and other operations that rely on global positioning systems – which can be made unreliable by space weather – can avoid conditions that might put operators at risk. Power companies can work to prevent problems.

“The shorter prediction timeframe will enable the electric industry to better prepare for potential issues,” said Gerry Cauley, president and chief executive officer of the North American Electric Reliability Corporation. “The continued improvement of forecasting through innovation and modernization of the existing satellite infrastructure is vital to support the reliability of North America’s bulk electric system.”

The new model, WSA-Enlil, combines two advanced models, the Wang-Sheeley-Arge (WSA) and Enlil (named for the Sumerian god of wind). These linked numerical forecast models simulate physical conditions and phenomena from the base of the sun’s corona out into interplanetary space, to Earth and beyond. Space weather scientists “inject” solar events into the WSA-Enlil model to understand how the space weather storm system is likely to unfold.

Scientists with NOAA, NASA, the Air Force Research Laboratory, the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado at Boulder, Boston University, the National Center for Atmospheric Research and George Mason University collaborated to develop the model.

The model has been used in experimental mode for several months and has accurately forecast the timing of recent space weather events. NOAA began running the new model on its supercomputers officially on September 30. Recent model run results are available online.

NOAA’s Space Weather Prediction Center in Boulder, Colo. is the nation’s official source of operational forecasts, warnings and alerts about space weather.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Katy Human | EurekAlert!
Further information:
http://www.noaa.gov
http://www.noaanews.noaa.gov/stories2011/20111019_spaceweather.html

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>