Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space weather prediction model improves NOAA’s forecast skill

21.10.2011
NOAA is now using a sophisticated forecast model that substantially improves predictions of space weather impacts on Earth. Better forecasts offer additional protection for people and the technology-based infrastructure we use daily.

Explosions in the sun’s outer atmosphere – tracked and forecast by NOAA scientists – can cause geomagnetic and solar radiation storms at Earth that can impede the operation of electrical power grids, interfere with the normal function of Global Positioning Systems and temporarily hamper radio and satellite telecommunications. Grid and satellite operators and airlines can take protective measures when stormy conditions are forecast.


An X-ray image of the Sun from August 5, captured by a NOAA satellite. Three successive coronal mass ejections - big blasts of plasma from the Sun - exploded from a bright region near far right (circled in additional image). Impacts on Earth were minimal: temporary high-frequency radio outages in a few regions, minor distortion of global positioning system signals and no known power outages or satellite damage. (Credit: NOAA)

“This advanced model has strengthened forecasters’ understanding of what happens in the 93 million miles between Earth and the sun following a solar disturbance,” said Tom Bogdan, director of NOAA’s Space Weather Prediction Center in Boulder, Colo. “It will help power grid and communications technology managers know what to expect so they can protect infrastructure and the public.”

Magnetic storms can occur on Earth 1–4 days after a coronal mass ejection – a burst of charged particles and magnetic field that streams out from the sun at more than one million miles an hour. Before development of this model, forecasters could predict timing of such impacts within a 30-hour window, on average. The new model allows forecasters to narrow that window to 12 hours.

That improvement gives airline operators more reliable information about when to reroute flights to avoid communications blackouts from storms. Satellite operators can avoid changing orbit or orientation when space weather threatens. Oil drilling, mining and other operations that rely on global positioning systems – which can be made unreliable by space weather – can avoid conditions that might put operators at risk. Power companies can work to prevent problems.

“The shorter prediction timeframe will enable the electric industry to better prepare for potential issues,” said Gerry Cauley, president and chief executive officer of the North American Electric Reliability Corporation. “The continued improvement of forecasting through innovation and modernization of the existing satellite infrastructure is vital to support the reliability of North America’s bulk electric system.”

The new model, WSA-Enlil, combines two advanced models, the Wang-Sheeley-Arge (WSA) and Enlil (named for the Sumerian god of wind). These linked numerical forecast models simulate physical conditions and phenomena from the base of the sun’s corona out into interplanetary space, to Earth and beyond. Space weather scientists “inject” solar events into the WSA-Enlil model to understand how the space weather storm system is likely to unfold.

Scientists with NOAA, NASA, the Air Force Research Laboratory, the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado at Boulder, Boston University, the National Center for Atmospheric Research and George Mason University collaborated to develop the model.

The model has been used in experimental mode for several months and has accurately forecast the timing of recent space weather events. NOAA began running the new model on its supercomputers officially on September 30. Recent model run results are available online.

NOAA’s Space Weather Prediction Center in Boulder, Colo. is the nation’s official source of operational forecasts, warnings and alerts about space weather.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Katy Human | EurekAlert!
Further information:
http://www.noaa.gov
http://www.noaanews.noaa.gov/stories2011/20111019_spaceweather.html

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>