Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Waste: Handling Garbage When Your Dumpster Is 100 Million Miles Away?

20.11.2008
In space, no one takes out the trash. Garbage can pile up, spoil and become a health hazard for astronauts in the cramped living quarters of a space station.

There has never been a good system for dealing with space waste - the space shuttle now brings full trash bags back to Earth; on the Russian space station MIR, junk would accumulate in hallways for months before it was sent to burn up in the Earth's atmosphere.

And that is why Jean Hunter, associate professor of agricultural and biological engineering, has been working with research partner Orbital Technologies Corp. (ORBITEC) of Madison, Wis., to develop a cutting-edge trash dryer for NASA. The space agency will need a new solid waste strategy before it sends astronauts on extended missions to Mars or an outpost on the moon.

Why bother drying trash? In space, waste can't simply be "thrown out." If astronauts place it outside the airlock, it will orbit alongside their spacecraft. If they eject it away from the spacecraft, they might encounter it again later. Or - even worse - it could contaminate another planet.

"We don't know if there's life on Mars," said Hunter, "but we know that our trash is teeming with it." Yes, the trash could be launched toward the sun, she says, but better to take usable resources out of it first. By that she means water, which is the most precious resource that astronauts take with them into space.

Hunter's group has developed a system that blows hot, dry air through wet trash and then collects water from the warm, moist air that emerges. This water can be purified for drinking, and the remaining trash is dry, odorless and inert. The air and the heat are both recycled to contain odors and save energy.

Heat-pump dehumidification drying, as the technique is called, which has commonly been used for drying lumber, needs to be adapted for space, though, because existing systems depend on the Earth's gravity and contain materials unacceptable for spaceflight. Hunter's team - including graduate student Apollo Arquiza, Jasmin Sahbaz '10, Carissa Jones '09 and high school student Trudy Chu - has been testing the dryer with fake "space trash" - a mix of paper towels, duct tape, baby wipes and dog food (to simulate the astronauts' food scraps).

"When people think about garbage in space, they remember the trash compactor scene from "Star Wars" - and believe it or not, there's some truth to that scene," Hunter said. "Trash in space is like you saw in the movie: big, wet, nasty and varied" (though, of course, without any trash-dwelling monsters).

A prototype heat-pump dryer is currently being tested at the NASA Ames Research Center. If NASA selects the Cornell/ORBITEC model (which Hunter describes in several peer-reviewed Society for Automotive Engineer technical papers) over dryers developed by competing groups, ORBITEC will make a prototype that performs under zero gravity, is small and light enough for a spacecraft and can survive the rigors of a rocket launch.

The future of Hunter's trash dryer technology - and of the entire manned spaceflight program, for that matter - will ultimately depend on the goals of the Obama administration.

"This whole thing could get mothballed," Hunter said, although she's hopeful that NASA will continue with its plans to return humans to the moon by 2019. "Now that we see India, Japan and China all interested in going back to the moon, I think the next president will want our nation to be part of that, too."

Recycling urine in space: Jean Hunter's team is also working on recovering potable water from space wastewater. On the International Space Station only cabin humidity condensate (moisture exhaled by astronauts and evaporated from wet towels and clothing) is now recovered and purified. Urine is chemically stabilized and stockpiled, and the astronauts use baby wipes and moist towels to keep clean, so there is no hygiene water.

On the planned lunar outpost, urine and hygiene water will have to be recycled. Existing NASA technology can recover around 85 percent of that water, but the last 15 percent, charitably called "brine," poses a much greater challenge. Hunter's team has a grant with ORBITEC to develop a new specialized brine dryer, but the team has submitted another proposal to dry brine in the trash dryer.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Nov08/SpaceWaste.html

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>