Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Waste: Handling Garbage When Your Dumpster Is 100 Million Miles Away?

20.11.2008
In space, no one takes out the trash. Garbage can pile up, spoil and become a health hazard for astronauts in the cramped living quarters of a space station.

There has never been a good system for dealing with space waste - the space shuttle now brings full trash bags back to Earth; on the Russian space station MIR, junk would accumulate in hallways for months before it was sent to burn up in the Earth's atmosphere.

And that is why Jean Hunter, associate professor of agricultural and biological engineering, has been working with research partner Orbital Technologies Corp. (ORBITEC) of Madison, Wis., to develop a cutting-edge trash dryer for NASA. The space agency will need a new solid waste strategy before it sends astronauts on extended missions to Mars or an outpost on the moon.

Why bother drying trash? In space, waste can't simply be "thrown out." If astronauts place it outside the airlock, it will orbit alongside their spacecraft. If they eject it away from the spacecraft, they might encounter it again later. Or - even worse - it could contaminate another planet.

"We don't know if there's life on Mars," said Hunter, "but we know that our trash is teeming with it." Yes, the trash could be launched toward the sun, she says, but better to take usable resources out of it first. By that she means water, which is the most precious resource that astronauts take with them into space.

Hunter's group has developed a system that blows hot, dry air through wet trash and then collects water from the warm, moist air that emerges. This water can be purified for drinking, and the remaining trash is dry, odorless and inert. The air and the heat are both recycled to contain odors and save energy.

Heat-pump dehumidification drying, as the technique is called, which has commonly been used for drying lumber, needs to be adapted for space, though, because existing systems depend on the Earth's gravity and contain materials unacceptable for spaceflight. Hunter's team - including graduate student Apollo Arquiza, Jasmin Sahbaz '10, Carissa Jones '09 and high school student Trudy Chu - has been testing the dryer with fake "space trash" - a mix of paper towels, duct tape, baby wipes and dog food (to simulate the astronauts' food scraps).

"When people think about garbage in space, they remember the trash compactor scene from "Star Wars" - and believe it or not, there's some truth to that scene," Hunter said. "Trash in space is like you saw in the movie: big, wet, nasty and varied" (though, of course, without any trash-dwelling monsters).

A prototype heat-pump dryer is currently being tested at the NASA Ames Research Center. If NASA selects the Cornell/ORBITEC model (which Hunter describes in several peer-reviewed Society for Automotive Engineer technical papers) over dryers developed by competing groups, ORBITEC will make a prototype that performs under zero gravity, is small and light enough for a spacecraft and can survive the rigors of a rocket launch.

The future of Hunter's trash dryer technology - and of the entire manned spaceflight program, for that matter - will ultimately depend on the goals of the Obama administration.

"This whole thing could get mothballed," Hunter said, although she's hopeful that NASA will continue with its plans to return humans to the moon by 2019. "Now that we see India, Japan and China all interested in going back to the moon, I think the next president will want our nation to be part of that, too."

Recycling urine in space: Jean Hunter's team is also working on recovering potable water from space wastewater. On the International Space Station only cabin humidity condensate (moisture exhaled by astronauts and evaporated from wet towels and clothing) is now recovered and purified. Urine is chemically stabilized and stockpiled, and the astronauts use baby wipes and moist towels to keep clean, so there is no hygiene water.

On the planned lunar outpost, urine and hygiene water will have to be recycled. Existing NASA technology can recover around 85 percent of that water, but the last 15 percent, charitably called "brine," poses a much greater challenge. Hunter's team has a grant with ORBITEC to develop a new specialized brine dryer, but the team has submitted another proposal to dry brine in the trash dryer.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Nov08/SpaceWaste.html

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>