Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space telescope’s new survey of outer galaxy helps Iowa State astronomers study stars

30.08.2010
The Spitzer Space Telescope is now taking aim at the outer reaches of the Milky Way and helping two Iowa State University astronomers advance their star studies.

Massimo Marengo, an assistant professor of physics and astronomy, is using data from Spitzer's infrared telescope to study big, cool-temperature stars and the dusty disks that forms around these and other stars as their planetary systems evolve. He is a co-author of a new paper that describes how tight double-star systems could be efficient "destroyers of worlds" because planet collisions may be common within the systems. The paper was published in the Aug. 19 issue of The Astrophysical Journal Letters.

Charles Kerton, as associate professor of physics and astronomy, is using Spitzer data to study star-forming regions of our Milky Way galaxy. He is co-author of a new paper that uses Spitzer images to identify regions within the inner Milky Way that are forming intermediate-mass stars. The paper was published in the August issue of The Astronomical Journal.

NASA's Spitzer Space Telescope launched Aug. 25, 2003, into an orbit of the sun. Its 33.5-inch diameter telescope and three scientific instruments are designed to detect infrared or heat radiation. To do that, the telescope assembly had to be cooled to within a few degrees of absolute zero (or -459 degrees Fahrenheit). The telescope ran out of liquid helium coolant last summer but is still able to collect data with its two shortest-wavelength detectors.

One of the telescope's initial tasks was to survey the Milky Way's dusty, star-filled center. The telescope, as part of an astronomy survey called GLIMPSE360, is now pointed toward outer regions of the galaxy and is beginning to send images of those remote areas. The survey is led by Barbara Whitney, a senior scientist at the University of Wisconsin-Madison and a senior research scientist at the Space Science Institute in Boulder, Colo.

Iowa State's Kerton and Marengo say the space telescope is an important part of their science.

"It lets me see objects that are obscured," said Kerton, who helped plan the GLIMPSE360 survey. "It allows me to detect young, newly formed stars that wouldn't be seen any other way. And it shows them at a resolution that helps us understand what we're seeing."

Where old surveys showed a single blob, Kerton said, the Spitzer images show a cluster of stars.

Marengo started working with the Spitzer experiment before it launched. When he was on the staff of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., he was part of the instrument group that built and calibrated Spitzer's hardware.

"Spitzer is really, really sensitive," Marengo said. "The first time it was turned on - before it was even calibrated - a 10-second exposure provided the equivalent depth of an exposure that used to take 10 hours with the 10-meter Keck telescope, the largest on Earth."

That, he said, is a big advantage when astronomers are trying to observe very cool, faint stars. And for his work, he said there are no ground telescopes that can match Spitzer's capabilities.

And now that the Spitzer Space Telescope is pointed away from the better-known inner galaxy, Kerton and Marengo said it will help astronomers understand unexplored parts of our galaxy through the end of the GLIMPSE360 survey early next year.

"Spitzer is getting farther and farther away," Marengo said. "And it's revealing more year by year."

Charles Kerton | EurekAlert!
Further information:
http://www.iastate.edu
http://www.news.iastate.edu/news/2010/aug/spitzer

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>