Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space telescope’s new survey of outer galaxy helps Iowa State astronomers study stars

30.08.2010
The Spitzer Space Telescope is now taking aim at the outer reaches of the Milky Way and helping two Iowa State University astronomers advance their star studies.

Massimo Marengo, an assistant professor of physics and astronomy, is using data from Spitzer's infrared telescope to study big, cool-temperature stars and the dusty disks that forms around these and other stars as their planetary systems evolve. He is a co-author of a new paper that describes how tight double-star systems could be efficient "destroyers of worlds" because planet collisions may be common within the systems. The paper was published in the Aug. 19 issue of The Astrophysical Journal Letters.

Charles Kerton, as associate professor of physics and astronomy, is using Spitzer data to study star-forming regions of our Milky Way galaxy. He is co-author of a new paper that uses Spitzer images to identify regions within the inner Milky Way that are forming intermediate-mass stars. The paper was published in the August issue of The Astronomical Journal.

NASA's Spitzer Space Telescope launched Aug. 25, 2003, into an orbit of the sun. Its 33.5-inch diameter telescope and three scientific instruments are designed to detect infrared or heat radiation. To do that, the telescope assembly had to be cooled to within a few degrees of absolute zero (or -459 degrees Fahrenheit). The telescope ran out of liquid helium coolant last summer but is still able to collect data with its two shortest-wavelength detectors.

One of the telescope's initial tasks was to survey the Milky Way's dusty, star-filled center. The telescope, as part of an astronomy survey called GLIMPSE360, is now pointed toward outer regions of the galaxy and is beginning to send images of those remote areas. The survey is led by Barbara Whitney, a senior scientist at the University of Wisconsin-Madison and a senior research scientist at the Space Science Institute in Boulder, Colo.

Iowa State's Kerton and Marengo say the space telescope is an important part of their science.

"It lets me see objects that are obscured," said Kerton, who helped plan the GLIMPSE360 survey. "It allows me to detect young, newly formed stars that wouldn't be seen any other way. And it shows them at a resolution that helps us understand what we're seeing."

Where old surveys showed a single blob, Kerton said, the Spitzer images show a cluster of stars.

Marengo started working with the Spitzer experiment before it launched. When he was on the staff of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., he was part of the instrument group that built and calibrated Spitzer's hardware.

"Spitzer is really, really sensitive," Marengo said. "The first time it was turned on - before it was even calibrated - a 10-second exposure provided the equivalent depth of an exposure that used to take 10 hours with the 10-meter Keck telescope, the largest on Earth."

That, he said, is a big advantage when astronomers are trying to observe very cool, faint stars. And for his work, he said there are no ground telescopes that can match Spitzer's capabilities.

And now that the Spitzer Space Telescope is pointed away from the better-known inner galaxy, Kerton and Marengo said it will help astronomers understand unexplored parts of our galaxy through the end of the GLIMPSE360 survey early next year.

"Spitzer is getting farther and farther away," Marengo said. "And it's revealing more year by year."

Charles Kerton | EurekAlert!
Further information:
http://www.iastate.edu
http://www.news.iastate.edu/news/2010/aug/spitzer

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>