Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Telescope’s New Survey of Outer Galaxy Helps Astronomers Study Stars

31.08.2010
The Spitzer Space Telescope is now taking aim at the outer reaches of the Milky Way and helping two Iowa State University astronomers advance their star studies.

Massimo Marengo, an assistant professor of physics and astronomy, is using data from Spitzer’s infrared telescope to study big, cool-temperature stars and the dusty disks that forms around these and other stars as their planetary systems evolve. He is a co-author of a new paper that describes how tight double-star systems could be efficient “destroyers of worlds” because planet collisions may be common within the systems. The paper was published in the Aug. 19 issue of The Astrophysical Journal Letters.

Charles Kerton, as associate professor of physics and astronomy, is using Spitzer data to study star-forming regions of our Milky Way galaxy. He is co-author of a new paper that uses Spitzer images to identify regions within the inner Milky Way that are forming intermediate-mass stars. The paper was published in the August issue of The Astronomical Journal.

NASA’s Spitzer Space Telescope launched Aug. 25, 2003, into an orbit of the sun. Its 33.5-inch diameter telescope and three scientific instruments are designed to detect infrared or heat radiation. To do that, the telescope assembly had to be cooled to within a few degrees of absolute zero (or -459 degrees Fahrenheit). The telescope ran out of liquid helium coolant last summer but is still able to collect data with its two shortest-wavelength detectors.

One of the telescope’s initial tasks was to survey the Milky Way’s dusty, star-filled center. The telescope, as part of an astronomy survey called GLIMPSE360, is now pointed toward outer regions of the galaxy and is beginning to send images of those remote areas. The survey is led by Barbara Whitney, a senior scientist at the University of Wisconsin-Madison and a senior research scientist at the Space Science Institute in Boulder, Colo.

Iowa State’s Kerton and Marengo say the space telescope is an important part of their science.

“It lets me see objects that are obscured,” said Kerton, who helped plan the GLIMPSE360 survey. “It allows me to detect young, newly formed stars that wouldn’t be seen any other way. And it shows them at a resolution that helps us understand what we’re seeing.”

Where old surveys showed a single blob, Kerton said, the Spitzer images show a cluster of stars.

Marengo started working with the Spitzer experiment before it launched. When he was on the staff of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., he was part of the instrument group that built and calibrated Spitzer’s hardware.

“Spitzer is really, really sensitive,” Marengo said. “The first time it was turned on – before it was even calibrated – a 10-second exposure provided the equivalent depth of an exposure that used to take 10 hours with the 10-meter Keck telescope, the largest on Earth.”

That, he said, is a big advantage when astronomers are trying to observe very cool, faint stars. And for his work, he said there are no ground telescopes that can match Spitzer’s capabilities.

And now that the Spitzer Space Telescope is pointed away from the better-known inner galaxy, Kerton and Marengo said it will help astronomers understand unexplored parts of our galaxy through the end of the GLIMPSE360 survey early next year.

“Spitzer is getting farther and farther away,” Marengo said. “And it’s revealing more year by year.”

Contacts:
Charles Kerton, Physics and Astronomy, (515) 294-2298, kerton@iastate.edu
Massimo Marengo, Physics and Astronomy, (515) 294-2958, mmarengo@iastate.edu
Mike Krapfl, News Service, (515) 294-4917, mkrapfl@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>