Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Space observatory’s detector technology goes into single-molecule imaging

Astrophysicists at RIKEN lend their expertise to biologists to develop one of the world’s fastest and most sensitive cameras to observe cell behavior at the nanometer scale.

Since 1999, Yoshiyuki Takizawa has been working on the Extreme Universe Space Observatory (EUSO), an international project to develop a super wide-field telescope capable of observing large volumes of Earth’satmosphere in order to detect the arrival of high-energy cosmic particles.

Along with other international astrophysicists, Takizawa has been developing a photon detector that will be a critical part of the new 2.5-meter EUSO telescope onboard the Kibo Japanese experiment module of the International Space Station. The module is to be launched by 2015. The detector will consist of six thousand 1-inch-square photomultiplier tubes, and will allow an area of about 400 kilometers in diameter of Earth’s atmosphere to be imaged in each shot.

The technologies for photon detection and the associated readout algorithm are so innovative that Takizawa, a research scientist at the Computational Astrophysics Laboratory of the RIKEN Advanced Science Institute (ASI) in Wako, decided to apply his expertise to observing a completely opposite object: molecules of nanometer size.

From space to single molecules

The original idea came from Takizawa’s supervisor, Toshikazu Ebisuzaki. Having conversations with various researchers, Ebisuzaki learned that biologists are frustrated with their inability to observe many important biological phenomena.

In collaboration with three biologists at RIKEN’s Wako campus—Yasushi Sako, Kiminori Ushida and Etsuko Muto—Takizawa obtained a research grant from the RIKEN Strategic Research Programs for Research and Development, or the ‘President’s Fund’ as it is known. The two-year interdisciplinary project, commenced in October 2008, aims to develop an ultra-sensitive camera based on Takizawa’s detector. “Unlike space science, a research target is on hand in biology. It is appealing to share the joy with biologists to uncover new mechanisms of living things,” Takizawa says.

The project comprises a dozen researchers from four laboratories. The new camera will be able to image molecules of 1–100 nanometers in size in just one microsecond, making it 10–100 times faster than equivalent detectors. Although there are existing technologies for looking at single molecules, none has so far delivered these capabilities.

Biological purposes

The three biologists collaborating with Takizawa study different subjects but share a fundamental objective to observe molecular behaviors with microsecond resolution. “We have individually chosen research topics best suited to test the detector’s performance,” says Ushida, a senior scientist at the Supermolecular Science Laboratory of the RIKEN ASI.

Three years ago, Ushida developed a novel method of fluorescence correlation spectroscopy to directly observe anomalous diffusion in hyaluronan solution, which plays an important role in controlling the transport of molecules in many biological media such as extracellular matrices. In the past, such phenomena were difficult to detect, forcing researchers to depend on hypotheses based on the simple rule that diffusion coefficients are constant. “I’d like to handle the diffusion of a single molecule in a precise manner using the best optical spectroscope, which will be possible with the new detector,” says Ushida.

Sako, a chief scientist at the Cellular Informatics Laboratory of the RIKEN ASI, is using single-molecule fluorescence microscopy to observe the orientation of membrane proteins, such as hormone receptors, through the movements of molecules and the changes of their structures and shapes. Researchers have many assumptions for the binding process between a hormone receptor and a specific hormone in membranes, but no one has directly seen such a reaction, Sako says.

Muto, team leader of the Laboratory of Molecular Biophysics at the RIKEN Brain Science Institute, and her colleagues are looking at the relationship between motor proteins and microtubules using dark-field microscopy. Microtubules exist within neurons and play an important role in the transport of intracellular substances. Malfunction of the transportation system is known to trigger certain diseases. “Higher temporal resolution could enable us to discover new types of fluctuations at smaller timescales,” says Itsushi Minoura, a postdoctoral fellow in Muto’s laboratory.

A prototype is now being used with a microscope in Sako’s laboratory. When they want to test the device, Kenji Okamoto, a researcher in Sako’s lab, sets up the device and gives meticulous instructions on its use. Another researcher in Sako’s lab, Kayo Hibino, is busy making novel fluorescent probes and particle probes that she will use to label sample cells so researchers can maximize the quality of images.

Critical technologies

The participants say the project wouldn’t have started without the ‘ubiquitous circuit board’ developed by Yasushi Watanabe, a research scientist in the Radiation Laboratory of the RIKEN Nishina Center for Accelerator-Based Science. The board is mounted with a DAP/DNA chip that has the special ability to reconfigure its signal processing logic circuit in one clock cycle—just six nanoseconds. Equivalent system chips, such as field-programmable gate arrays, require up to a few seconds to rewrite configuration programs. Watanabe’s circuit board is innovative in that it is capable of storing numerous programs and reading out optimal programs according to the type of signal detected. The device, also developed with the support of the President’s Fund, was completed in 2007.

Takizawa and his colleague Yoshiya Kawasaki are developing a key technology: a G-APD photon detection system. The system consists of a Geiger-mode avalanche photodiode (G-APD), an application-specific integrated circuit (ASIC) and Watanabe’s ubiquitous circuit board. The ASIC is another type of system chip that was originally developed jointly by the Ebisuzaki laboratory and the Institute of Space and Astronautical Science (ISAS) of the Japan Aerospace Exploration Agency. Takizawa and Kawasaki have upgraded the chip design with ISAS collaborators and adjusted it for use in the current project. They are now pursuing “the most delicate part of the detector system development,” as Takizawa says, to connect their new circuit to the ubiquitous circuit board in order to relay ultra-fast signals without electrical noise.

The first prototype will likely be completed by the end of 2009, but the participants won’t be satisfied to leave the development there. “The most important thing in this project is not simply to make the prototype camera work, but what we will do next,” says Sako. Takizawa adds, “We’d like to keep improving our technologies so as many people as possible can benefit from our work.”

Saeko Okada | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>