Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Source of ‘Moon Curse’ Revealed by Eclipse

12.02.2014
Strange events have long been linked to nights of a full moon, though careful scrutiny dispels any association.

So, when signals bounced off the lunar surface returned surprisingly faint echoes on full moon nights, scientists sought an explanation in reason rather than superstition. Still, the most compelling evidence arrived during another event that once evoked irrational fears—on a night when Earth's shadow eclipsed the full moon.


Lunar-ranging laser illuminates a spot of high thin clouds on its way to the surface of the eclipsed moon. Image credit, Jack Dembicky, Apache Point Observatory


A laser beam from the Apache Point Observatory heads toward the moon on a nearly clear night. Image credit, Jack Dembicky, Apache Point Observatory

Tom Murphy, a physicist at UC San Diego, is among the scientists who have aimed laser beams at suitcase-sized reflectors placed on the moon by Apollo astronauts and unmanned Soviet rovers. By precisely timing the light's return to Earth, Murphy can measure the distance from here to the moon with millimeter precision.

Lunar ranging, as this is called, has revealed that the moon is slowly spiraling away from us and suggested that it has a molten core. Murphy's group is using precise measurements of the changing shape of the lunar orbit to subject Einstein's theory of general relativity to the most stringent test yet.

Murphy Does the Math
When he's not testing one theory of science's best-known genius, Tom Murphy turns his analytical mind to a different set of problems: human use of energy and our propensity toward growth.
In his blog, Do the Math, Murphy uses quantitative estimations to bring clarity to complex issues. His posts delve into questions of energy balance from the personal to galactic scales and use mathematics and physics to evaluate choices to be made as individuals and as communities.

Q&A with Tom Murphy

Over time, signals returned by the reflectors, faint to begin with, have faded. The project Murphy leads at Apache Point Observatory in New Mexico sends laser pulses of 100 quadrillion photons, of which, on average, a single lonely photon returns – if any at all. Earth's atmosphere nudges some photons off target so that they hit the lunar soil, and the reflectors slightly diffract the returning beam so that most miss the telescope when they return.

Even after accounting for these losses, Murphy's team records ten times fewer photons than they expect. And on full moon nights it's even worse, dropping to just 1 percent of the predicted performance. Other observatories are unable to detect any returned signal on full moon nights.

The team jokingly dubbed this lousy performance "the full-moon curse," Murphy says. "For a while we thought we were just victims of bad luck, but the trend continued, month after month."

Murphy thinks accumulated moon dust could account for the diminished returns, which could spell bad news for plans to place telescopes up there. Although there's no wind on the moon, electrostatic forces and a constant bombardment by tiny meteorites could have kicked up some of the lunar dust to coat the surface of the clear glass prisms arrayed in each reflector.

Light must pass through the surface of each prism twice—on the way in and on the way back out. A dusting that covers 50 percent of the glass would be enough to account for the dimming of the return signal they observe on most nights, Murphy calculates.

But something else, something in addition to simple obscuration is needed to account for the dramatic drop on full moon nights. Murphy thinks it's heat.

The prisms are sunk a bit into cylinders so that the sun only fully illuminates them when it shines straight in. Because the arrays face Earth, that only happens on full moon nights. When it does, the dark dust of the lunar regolith would heat up, setting up a thermal gradient between the surface and the depths of the prisms. That would degrade their performance by altering the refractive index, turning the prism into an unintentional lens and diverging the returning light so that even fewer photons return to the telescope.

It's a beautiful idea because it generates a thing scientists probably love most: a testable prediction. If the poor performance on full moon nights resulted from heating of the surface of the cubes, turning off the light should boost the signal as soon as the surface cools so that the temperature throughout the cubes is uniform.

All you'd have to do is turn off the Sun. Or wait for the Earth to pass between the Sun and moon, as it does during a lunar eclipse. On the night of December 21, 2010, Murphy's team was fortunate to have decent observing conditions during a lunar eclipse. For five and half hours, they ranged lasers from the three Apollo reflector arrays and a fourth mounted on a Soviet rover (once thought lost for good) as the edge of Earth's shadow passed by each in turn and as they re-emerged one-by-one into full sunlight.

As predicted, they saw a tenfold spike in performance as the celestial light switch was thrown, restoring the signal to levels they see on other nights, the team recently reported in the scientific journal Icarus.

So why, skeptics might wonder, if moon dust is moving about, can the boot prints left by astronauts decades ago still be seen? Murphy has a calculation for that too: at the rate of deposition that must have occurred to obscure the reflectors, it would take tens of thousands of years.

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu
http://ucsdnews.ucsd.edu/feature/source_of_moon_curse_revealed_by_eclipse

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>