Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sounding Rocket to Peek at Atmosphere of Venus

26.11.2013
A week after launching a new orbiter to investigate the upper atmosphere of Mars, NASA is sending a sounding rocket to probe the atmosphere of Venus.

The Mars Atmosphere and Volatile Evolution, or MAVEN, mission launched from Cape Canaveral Air Force Station in Florida on Nov. 18. Now, the Venus Spectral Rocket, VeSpR for short, is scheduled to lift off from White Sands, N.M., on Nov. 25.


NASA is launching a sounding rocket to study ultraviolet light being emitted from the atmosphere of Venus, shown here in false color to highlight subtle contrasts in cloud markings.
Image Credit: NASA JPL

"It is appropriate that these launch dates are close together, because both missions will study atmospheric loss," said Kelly Fast, the program scientist for MAVEN and the program officer for Planetary Astronomy at NASA Headquarters in Washington. "VeSpR will peek at Venus from above Earth's absorbing atmosphere, and MAVEN will journey to Mars to do a long-term study."

VeSpR is a two-stage system, combining a Terrier missile – originally built as a surface-to-air missile and later repurposed to support science missions – and a Black Brant model Mk1 sounding rocket with a telescope inside. Integration took place at NASA’s Wallops Flight Facility in Virginia.

The experiments will look at ultraviolet (UV) light that is being emitted from Venus' atmosphere, which can provide information about the history of the planet's water. Measurements like these cannot be done using Earth-based telescopes because our atmosphere absorbs most UV light before it reaches the ground.

The solution is to make UV measurements from beyond Earth's atmosphere. In this case, the sounding rocket will carry the telescope more than 65 miles (110 kilometers) above the surface of Earth; at that altitude, the atmosphere thins out enough to permit UV readings.

"Venus today has a thick atmosphere that contains very little water, but we think the planet started out with an ocean's worth of water," said John T. Clarke of Boston University, the mission's principal investigator.

Scientists are still trying to determine whether water existed on the surface of Venus or only high up the atmosphere, where temperatures were cooler. If the surface temperature stayed below the boiling point of water long enough, rivers might have once flowed on the planet. Venus may have even had ice.

The key to figuring out how much water Venus once had lies in how much hydrogen and deuterium, a heavier version of hydrogen, remain in the atmosphere. Both can combine with oxygen to make water, either in the familiar H2O form or the rarer hydrogen, deuterium and oxygen form, called HDO. (Very small amounts of D2O also form.)

Intense UV light from the sun has broken apart nearly all of the water molecules in Venus' atmosphere. Because the regular hydrogen atoms in the water are lighter, they escape into space more quickly than the heavier deuterium ones. By comparing the amount of deuterium now in the atmosphereto the amount of hydrogen, researchers can estimate how much water disappeared from Venus and how quickly it happened.

Earlier estimates, made from data collected by NASA's 1978 Pioneer Venus spacecraft and other observations, indicated Venus could have had enough ancient water to cover the whole globe with 23 feet (7 meters) of liquid. But it turns out that the amounts of hydrogen and deuterium can vary at different heights in Venus' atmosphere, which could change the calculations. To help resolve the uncertainty, VeSpR will make measurements specifically in the upper atmosphere.

The VeSpR instrument will observe Venus for 8 minutes, with data being transmitted in real time, before the payload returns on a parachute safely to Earth. Later, the payload will be retrieved so that the instrument can be used for future experiments.

Clarke and his team will combine these measurements with observations of Venus they made recently with NASA's Hubble Space Telescope. The group is also collaborating with Jean-Loup Bertaux of France's Centre National de la Recherche Scientifique to study the planet using the UV instrument on the European Space Agency's Venus Express spacecraft.

VeSpR was built with funding from NASA's Planetary Astronomy program. The NASA sounding rocket program is managed for the agency at NASA’s Wallops Flight Facility. MAVEN's principal investigator is based at the University of Colorado Laboratory for Atmospheric and Space Physics in Boulder. NASA's Goddard Space Flight Center in Greenbelt, Md., manages MAVEN. Lockheed Martin built the MAVEN spacecraft and is responsible for mission operations.

Elizabeth Zubritsky
NASA's Goddard Space Flight Center, Greenbelt, Md.

Elizabeth Zubritsky | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/sounding-rocket-to-peek-at-atmosphere-of-venus/

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>