Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sounding Rocket to Peek at Atmosphere of Venus

26.11.2013
A week after launching a new orbiter to investigate the upper atmosphere of Mars, NASA is sending a sounding rocket to probe the atmosphere of Venus.

The Mars Atmosphere and Volatile Evolution, or MAVEN, mission launched from Cape Canaveral Air Force Station in Florida on Nov. 18. Now, the Venus Spectral Rocket, VeSpR for short, is scheduled to lift off from White Sands, N.M., on Nov. 25.


NASA is launching a sounding rocket to study ultraviolet light being emitted from the atmosphere of Venus, shown here in false color to highlight subtle contrasts in cloud markings.
Image Credit: NASA JPL

"It is appropriate that these launch dates are close together, because both missions will study atmospheric loss," said Kelly Fast, the program scientist for MAVEN and the program officer for Planetary Astronomy at NASA Headquarters in Washington. "VeSpR will peek at Venus from above Earth's absorbing atmosphere, and MAVEN will journey to Mars to do a long-term study."

VeSpR is a two-stage system, combining a Terrier missile – originally built as a surface-to-air missile and later repurposed to support science missions – and a Black Brant model Mk1 sounding rocket with a telescope inside. Integration took place at NASA’s Wallops Flight Facility in Virginia.

The experiments will look at ultraviolet (UV) light that is being emitted from Venus' atmosphere, which can provide information about the history of the planet's water. Measurements like these cannot be done using Earth-based telescopes because our atmosphere absorbs most UV light before it reaches the ground.

The solution is to make UV measurements from beyond Earth's atmosphere. In this case, the sounding rocket will carry the telescope more than 65 miles (110 kilometers) above the surface of Earth; at that altitude, the atmosphere thins out enough to permit UV readings.

"Venus today has a thick atmosphere that contains very little water, but we think the planet started out with an ocean's worth of water," said John T. Clarke of Boston University, the mission's principal investigator.

Scientists are still trying to determine whether water existed on the surface of Venus or only high up the atmosphere, where temperatures were cooler. If the surface temperature stayed below the boiling point of water long enough, rivers might have once flowed on the planet. Venus may have even had ice.

The key to figuring out how much water Venus once had lies in how much hydrogen and deuterium, a heavier version of hydrogen, remain in the atmosphere. Both can combine with oxygen to make water, either in the familiar H2O form or the rarer hydrogen, deuterium and oxygen form, called HDO. (Very small amounts of D2O also form.)

Intense UV light from the sun has broken apart nearly all of the water molecules in Venus' atmosphere. Because the regular hydrogen atoms in the water are lighter, they escape into space more quickly than the heavier deuterium ones. By comparing the amount of deuterium now in the atmosphereto the amount of hydrogen, researchers can estimate how much water disappeared from Venus and how quickly it happened.

Earlier estimates, made from data collected by NASA's 1978 Pioneer Venus spacecraft and other observations, indicated Venus could have had enough ancient water to cover the whole globe with 23 feet (7 meters) of liquid. But it turns out that the amounts of hydrogen and deuterium can vary at different heights in Venus' atmosphere, which could change the calculations. To help resolve the uncertainty, VeSpR will make measurements specifically in the upper atmosphere.

The VeSpR instrument will observe Venus for 8 minutes, with data being transmitted in real time, before the payload returns on a parachute safely to Earth. Later, the payload will be retrieved so that the instrument can be used for future experiments.

Clarke and his team will combine these measurements with observations of Venus they made recently with NASA's Hubble Space Telescope. The group is also collaborating with Jean-Loup Bertaux of France's Centre National de la Recherche Scientifique to study the planet using the UV instrument on the European Space Agency's Venus Express spacecraft.

VeSpR was built with funding from NASA's Planetary Astronomy program. The NASA sounding rocket program is managed for the agency at NASA’s Wallops Flight Facility. MAVEN's principal investigator is based at the University of Colorado Laboratory for Atmospheric and Space Physics in Boulder. NASA's Goddard Space Flight Center in Greenbelt, Md., manages MAVEN. Lockheed Martin built the MAVEN spacecraft and is responsible for mission operations.

Elizabeth Zubritsky
NASA's Goddard Space Flight Center, Greenbelt, Md.

Elizabeth Zubritsky | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/sounding-rocket-to-peek-at-atmosphere-of-venus/

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>