Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sounding Rocket Mission to Observe Magnetic Fields on the Sun

03.07.2012
On July 5, NASA will launch a mission called the Solar Ultraviolet Magnetograph Investigation or SUMI, to study the intricate, constantly changing magnetic fields on the sun in a hard-to-observe area of the sun's low atmosphere called the chromosphere.

Magnetic fields, and the intense magnetic energy they help marshal, lie at the heart of how the sun can create huge explosions of light such as solar flares and eruptions of particles such as coronal mass ejections (CMEs). While there are already instruments – both on the ground and flying in space – that can measure these fields, each is constrained to observe the fields on a particular layer of the sun's surface or atmosphere. Moreover, none of them can see the layer SUMI will observe.


SUMI’s instruments are designed to study magnetic fields of the sun’s chromosphere -- a thin layer of solar atmosphere sandwiched between the visible surface, photosphere and its atmosphere, the corona. Hinode, a collaborative mission of the space agencies of Japan, the United States, United Kingdom and Europe, captured these very dynamic pictures of our sun's chromosphere on Jan. 12, 2007. Image credit: JAXA/NASA

"What's novel with this instrument is that it observes ultraviolet light, when all the others look at infrared or visible light," says Jonathan Cirtain, a solar scientist at NASA's Marshall Space Flight Center in Huntsville, Ala. and the principal investigator for SUMI. "Those wavelengths of light correspond to the lowest levels in the sun's atmosphere, but SUMI will look at locations higher in the chromosphere."

This higher layer of the chromosphere is known as the transition region – because the chromosphere transitions here into the part of the sun's atmosphere called the corona -- and it is a region that is dominated by the magnetic fields and in which solar material heats up dramatically forming the corona and the base of the solar wind. Understanding the structure of the magnetic fields in this region will then allow us to understand how the corona is heated and how the solar wind is formed. It is also an area believed to be where flare accelerated particles originate, so understanding the processes at play in the transition region can help with models to predict such eruptions on the sun.

To measure magnetic fields in the chromosphere, SUMI will observe the ultraviolet (UV) light emitted from two types of atoms on the sun, Magnesium 2 and Carbon 4. Through established methods of measuring how the light is affected as it travels through the magnetic environment of the solar atmosphere towards Earth, scientists can measure the original strength and direction of the magnetic fields, thus creating a three-dimensional magnetic map of the region.

This trip for SUMI is largely a test flight to make sure the instrument works and to assess possible improvements. The instrument flew once before in July 2010 but experienced a much higher G-force than expected, which broke screws holding the main mirror in place so it could not gather accurate data. The team has now reinforced the mirror.

"With the knowledge we get from a successful SUMI mission, we can go on to build space-based instrumentation that will help us understand the processes that form flares and CME's and help us predict space weather," says Cirtain.

SUMI will launch from White Sands Missile Range in New Mexico on a Black Brant rocket. The flight will last about eight minutes total.

Karen C. Fox
NASA Goddard Space Flight Center, Greenbelt, MD

Karen Fox | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/sunearth/news/sumi-science.html

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>