Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sound in Saturn’s rings: RUB-Physicists explain nonlinear dust acoustic waves in dusty plasmas

16.10.2012
Bengt Eliasson elected as a Fellow of the American Physical Society

Dusty plasmas can be found in many places both in space and in the laboratory. Due to their special properties, dust acoustic waves can propagate inside these plasmas like sound waves in air, and can be studied with the naked eye or with standard video cameras.

The RUB physicists Prof. Dr. Dr. h.c. Padma Kant Shukla and Dr. Bengt Eliasson from the Faculty of Physics and Astronomy have published a model with which they describe how large amplitude dust acoustic waves in dusty plasmas behave. The researchers report their new findings in the journal Physical Review E.

Different acoustic phenomena in dusty plasmas

Dusty plasmas are composed of electrons, positive ions, neutral atoms, and dust grains that are negatively or positively charged. Only in plasmas containing electrically charged dust grains, dust sound waves emerge – the so called dust acoustic waves. These waves are supported by the inertia of the massive charged dust particles. The restoring force – causing the particles to oscillate and the wave to propagate – comes from the pressure of the hot electrons and ions. Recently, several laboratory experiments revealed nonlinear dust acoustic waves with extremely large amplitudes in the form of dust acoustic solitary pulses and shock waves, propagating in the plasma with speeds of a few centimeters per second. Padma Shukla and Bengt Elisasson have developed a unified theory explaining under which circumstances nonlinear dust acoustic shocks as well as dust acoustic solitary pulses occur in dusty plasmas.

Acoustic waves interacting with themselves

Dust acoustic waves with large amplitudes interact among themselves thereby generating new waves with frequencies and wavelengths different from the ones of the original dust acoustic waves. Due to the generation of harmonics (i.e., waves with frequencies that are a multiple integer of the original frequency) and due to constructive interference between dust acoustic waves of different wavelengths, the waves develop into solitary, spiky pulses, or into shock waves. The solitary pulses arise from a balance between the harmonic generation nonlinearities and the dust acoustic wave dispersion. Shock waves, on the other hand, form when the dust fluid viscosity dominates over dispersion. This happens at high dust densities when the dust particles are close enough to interact and collide with neighboring dust particles.

Theory successfully explains data from experiments

The new Shukla-Eliasson nonlinear theory and numerical simulations of the dynamics of nonlinear dust acoustic waves successfully explain observations from laboratory experiments of three different groups world-wide, in the USA (Robert Merlino), Taiwan (Lin I), and India (Predhiman Kaw). These three international groups described the existence of large amplitudes dust acoustic solitary pulses and dust acoustic shocks in their low-temperature dusty plasmas. Applying the new nonlinear dust acoustic wave theory, one can infer the dust fluid viscosity from the width of the dust acoustic shock wave. “Our results may also be important as a possible mechanism for understanding the cause of dust grain clustering and dust structuring in planets and in star forming regions,” suggests Prof. Padma Kant Shukla.

Existence of dusty acoustic waves predicted more than two decades ago

More than two decades ago, Prof. Padma Kant Shukla theoretically predicted the existence of linear and nonlinear dust acoustic waves in dusty plasmas, which since then have been observed in many laboratory experiments. His discovery has transformed the field of plasma physics, and has opened up a new interdisciplinary research field at the crossroad between condensed matter physics and astrophysics.

APS Fellowship for contributions to computational and nonlinear plasma physics

For his seminal contribution to computational and nonlinear plasma physics, Dr. Bengt Eliasson was newly elected as a Fellow of the American Physical Society (APS) in September 2012. An APS Fellowship is a distinct honor signifying recognition by one’s professional peers. The number of Fellows that are annually elected is less than one percent of the current number of APS members. Dr. Bengt Eliasson graduated with a Master degree in Engineering Physics from Uppsala University, Sweden, where he also obtained his PhD degree in Numerical Analysis. Since 2003, he works in the Faculty of Physics and Astronomy at the Ruhr-Universität Bochum. The contributions of Dr. Bengt Eliasson to various fields of space and plasma physics range from large-scale simulations of the Earth's ionosphere to new theoretical and numerical models of quantum plasmas at nanoscales. The results of his research projects have been published in approximately 150 articles in refereed journals and he was invited to give talks at the European Geophysical Union, European Physical Society, American Physical Society, International Congress on Plasma Physics, and other meetings.

Bibliographic record

P. K. Shukla, B. Eliasson (2012): Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas, doi: 10.1103/PhysRevE.86.046402

Further information

Prof. Dr. Dr. h.c. Padma Kant Shukla, RUB International Chair, Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr-Universität Bochum, 44780 Bochum, Germany, Tel. +49/234/32-23759, Fax: +49/234/32-14733, ps@tp4.rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>