Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sound of light: Innovative technology shatters the barriers of modern light microscopy

02.07.2009
Researchers at the Helmholtz Zentrum München and the Technische Universität München are using a combination of light and ultrasound to visualize fluorescent proteins that are seated several centimeters deep into living tissue.

In the past, even modern technologies have failed to produce high-resolution fluorescence images from this depth because of the strong scattering of light.

In the Nature Photonics journal, the Munich researchers describe how they can reveal genetic expression within live fly larvae and fish by “listening to light”. In the future this technology may facilitate the examination of tumors or coronary vessels in humans.

Since the dawn of the microscope scientists have been using light to scrutinize thin sections of tissue to ascertain whether they are healthy or diseased or to investigate cell function. However, the penetration limits for this kind of examination lie between half a millimeter and one millimeter of tissue. In thicker layers light is diffused so strongly that all useful details are obscured.

Together with his research team, Professor Vasilis Ntziachristos, director of the Institute of Biological and Medical Imaging of the Helmholtz Zentrum München – German Research Center for Environmental Health and chair for biological imaging at the Technische Universität München, has now broken through this barrier and rendered three-dimensional images through at least six millimeters of tissue, allowing whole-body visualization of adult zebra fish.

To achieve this feat, Prof. Ntziachristos and his team made light audible. They illuminated the fish from multiple angles using flashes of laser light that are absorbed by fluorescent pigments in the tissue of the genetically modified fish. The fluorescent pigments absorb the light, a process that causes slight local increases temperature, which in turn result in tiny local volume expansions. This happens very quickly and creates small shock waves. In effect, the short laser pulse gives rise to an ultrasound wave that the researchers pick up with an ultrasound microphone.

The real power of the technique, however, lies in specially developed mathematical formulas used to analyze the resulting acoustic patterns. An attached computer uses these formulas to evaluate and interpret the specific distortions caused by scales, muscles, bones and internal organs to generate a three-dimensional image.

The result of this “multi-spectral opto-acoustic tomography”, or MSOT, is an image with a striking spatial resolution better than 40 micrometers (four hundredths of a millimeter). And best of all, the sedated fish wakes up and recovers without harm following the procedure.

Dr. Daniel Razansky, who played a pivotal role in developing the method, says, "This opens the door to a whole new universe of research. For the first time, biologists will be able to optically follow the development of organs, cellular function and genetic expression through several millimeters to centimeters of tissue.”

In the past, understanding the evolution of development or of disease required numerous animals to be sacrificed. With a plethora of fluorochrome pigments to choose from – including pigments using the fluorescence protein technology for which a Nobel Prize was awarded in 2008 and clinically approved fluorescent agents – observing metabolic and molecular processes in all kinds of living organisms, from fish to mice and humans, will be possible. The fruits of pharmaceutical research can also be harvested faster since the molecular effects of new treatments can be observed in the same animals over an extended period of time.

Bio-engineer Ntziachristos is convinced that, “MSOT can truly revolutionize biomedical research, drug discovery and healthcare. Since MSOT allows optical and fluorescence imaging of tissue to a depth of several centimeters, it could become the method of choice for imaging cellular and subcellular processes throughout entire living tissues.”

Further information
Reference:
Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo
Daniel Razansky, Martin Distel, Claudio Vinegoni, Rui Ma, Norbert Perrimon, Reinhard W. Köster & Vasilis Ntziachristos

Nature Photonics, published online on 21 June 2009; doi:10.1038/nphoton.2009.98

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 15 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

The Institute for Biological and Medical Imaging (IBMI) focuses on the development and propagation of in-vivo imaging technology to the life sciences with application spanning from basic and drug discovery interrogations to pre-clinical imaging and clinical translation.

Editor
Sven Winkler, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. Phone: +49(0)89-3187-3946. Fax +49(0)89-3187-3324, email: presse@helmholtz-muenchen.de

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>