Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing sound

08.11.2011
National Physical Laboratory develops noninvasive method to visualise sound propagation and help sound engineers design out dead spots

High-performance loudspeaker manufacturers have been able to improve sound quality dramatically over the years, but still face the issue of dead spots.

While HIFI loudspeakers can be designed to deliver the full frequency range of audible sound, it is difficult to achieve a smooth frequency output in all directions. Dead spots are caused by deconstructive interference as a result ofradiating sound waves overlapping and cancelling each other out.

The biggest issue being where the sound is radiating from two or more sources, which commonly occurs in the mid-frequency ranges where both the 'woofer' and 'tweeter' loudspeaker cones are both active. This creates areas where the frequency response of the loudspeaker is less smooth, and sound quality is diminished.

Determining the nature of these dead spots has proven difficult until now. High accuracy acoustic measurements can be made using a microphone, but to build up a picture of the spatial distribution of the sound many point measurements are required within the 3D space.

Manufacturers can conduct computer-aided simulations, but these can prove inaccurate to the actual loudspeaker performance through the variability of the manufacturing process.

Now The National Physical Laboratory (NPL), the UK's Measurement Institute, has developed a solution. The new laser-driven technique allows remote, non-invasive and rapid mapping of sound fields, which will provide loudspeaker manufacturers with reliable data on which to design their technology.

The technique builds on a piece of technology developed for the study of mechanical vibration; the laser vibrometer, and on research for its application to the 3D characterisation of underwater sonar arrays. This NPL work has shown that in air, the acousto-optic effect, the resulting optical phase change of light as it passes through an acoustic field, is significant enough to be detected. To measure the acoustic output from the loudspeaker, the laser is positioned to the side of the loudspeaker and is rapidly scanned through a series of points in front of the loudspeaker, being reflected back to the laser vibrometer by virtue of a retro-reflective mirror on the other side. By measuring the laser as it returns to its source, the technology can rapidly provide spatially distributed phase shift data, enabling an image, or video, of sound propagation around the source to be constructed.

Ian Butterworth, project lead at NPL, said: "This is a significant breakthrough for loudspeaker manufacturers. By having actual data to rely on, they will be able to better understand how different designs impact the loudspeaker's directionality, and design out the dead spots which could limit the quality of the loudspeaker."

"The main applications are likely to be for high-end in-home loudspeaker manufacturers who want their products to deliver the perfect surround sound experience, and outdoor loudspeaker manufacturers who want to eliminate the noticeable spatial changes in levels experienced at music festivals and other live events."

"We're now looking to conduct further studies, scanning larger areas with higher definition, to get a better picture of how sound is propagating away from these loudspeakers."

The measurement technique should ideally be performed in conditions that minimise sound reflection, such as NPL's hemi-anechoic chamber. However measurements can also be carried out outdoors given the natural hemi-anechoic nature of fields.

See an explanation and example scan here:
http://www.youtube.com/watch?v=VRq1vc00R7s

The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

Joe Meaney | EurekAlert!
Further information:
http://www.npl.co.uk/acoustics

Further reports about: NPL Seeing measurement medical treatment quality of life sound quality sound wave

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>