Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing sound

08.11.2011
National Physical Laboratory develops noninvasive method to visualise sound propagation and help sound engineers design out dead spots

High-performance loudspeaker manufacturers have been able to improve sound quality dramatically over the years, but still face the issue of dead spots.

While HIFI loudspeakers can be designed to deliver the full frequency range of audible sound, it is difficult to achieve a smooth frequency output in all directions. Dead spots are caused by deconstructive interference as a result ofradiating sound waves overlapping and cancelling each other out.

The biggest issue being where the sound is radiating from two or more sources, which commonly occurs in the mid-frequency ranges where both the 'woofer' and 'tweeter' loudspeaker cones are both active. This creates areas where the frequency response of the loudspeaker is less smooth, and sound quality is diminished.

Determining the nature of these dead spots has proven difficult until now. High accuracy acoustic measurements can be made using a microphone, but to build up a picture of the spatial distribution of the sound many point measurements are required within the 3D space.

Manufacturers can conduct computer-aided simulations, but these can prove inaccurate to the actual loudspeaker performance through the variability of the manufacturing process.

Now The National Physical Laboratory (NPL), the UK's Measurement Institute, has developed a solution. The new laser-driven technique allows remote, non-invasive and rapid mapping of sound fields, which will provide loudspeaker manufacturers with reliable data on which to design their technology.

The technique builds on a piece of technology developed for the study of mechanical vibration; the laser vibrometer, and on research for its application to the 3D characterisation of underwater sonar arrays. This NPL work has shown that in air, the acousto-optic effect, the resulting optical phase change of light as it passes through an acoustic field, is significant enough to be detected. To measure the acoustic output from the loudspeaker, the laser is positioned to the side of the loudspeaker and is rapidly scanned through a series of points in front of the loudspeaker, being reflected back to the laser vibrometer by virtue of a retro-reflective mirror on the other side. By measuring the laser as it returns to its source, the technology can rapidly provide spatially distributed phase shift data, enabling an image, or video, of sound propagation around the source to be constructed.

Ian Butterworth, project lead at NPL, said: "This is a significant breakthrough for loudspeaker manufacturers. By having actual data to rely on, they will be able to better understand how different designs impact the loudspeaker's directionality, and design out the dead spots which could limit the quality of the loudspeaker."

"The main applications are likely to be for high-end in-home loudspeaker manufacturers who want their products to deliver the perfect surround sound experience, and outdoor loudspeaker manufacturers who want to eliminate the noticeable spatial changes in levels experienced at music festivals and other live events."

"We're now looking to conduct further studies, scanning larger areas with higher definition, to get a better picture of how sound is propagating away from these loudspeakers."

The measurement technique should ideally be performed in conditions that minimise sound reflection, such as NPL's hemi-anechoic chamber. However measurements can also be carried out outdoors given the natural hemi-anechoic nature of fields.

See an explanation and example scan here:
http://www.youtube.com/watch?v=VRq1vc00R7s

The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

Joe Meaney | EurekAlert!
Further information:
http://www.npl.co.uk/acoustics

Further reports about: NPL Seeing measurement medical treatment quality of life sound quality sound wave

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>