Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing sound

08.11.2011
National Physical Laboratory develops noninvasive method to visualise sound propagation and help sound engineers design out dead spots

High-performance loudspeaker manufacturers have been able to improve sound quality dramatically over the years, but still face the issue of dead spots.

While HIFI loudspeakers can be designed to deliver the full frequency range of audible sound, it is difficult to achieve a smooth frequency output in all directions. Dead spots are caused by deconstructive interference as a result ofradiating sound waves overlapping and cancelling each other out.

The biggest issue being where the sound is radiating from two or more sources, which commonly occurs in the mid-frequency ranges where both the 'woofer' and 'tweeter' loudspeaker cones are both active. This creates areas where the frequency response of the loudspeaker is less smooth, and sound quality is diminished.

Determining the nature of these dead spots has proven difficult until now. High accuracy acoustic measurements can be made using a microphone, but to build up a picture of the spatial distribution of the sound many point measurements are required within the 3D space.

Manufacturers can conduct computer-aided simulations, but these can prove inaccurate to the actual loudspeaker performance through the variability of the manufacturing process.

Now The National Physical Laboratory (NPL), the UK's Measurement Institute, has developed a solution. The new laser-driven technique allows remote, non-invasive and rapid mapping of sound fields, which will provide loudspeaker manufacturers with reliable data on which to design their technology.

The technique builds on a piece of technology developed for the study of mechanical vibration; the laser vibrometer, and on research for its application to the 3D characterisation of underwater sonar arrays. This NPL work has shown that in air, the acousto-optic effect, the resulting optical phase change of light as it passes through an acoustic field, is significant enough to be detected. To measure the acoustic output from the loudspeaker, the laser is positioned to the side of the loudspeaker and is rapidly scanned through a series of points in front of the loudspeaker, being reflected back to the laser vibrometer by virtue of a retro-reflective mirror on the other side. By measuring the laser as it returns to its source, the technology can rapidly provide spatially distributed phase shift data, enabling an image, or video, of sound propagation around the source to be constructed.

Ian Butterworth, project lead at NPL, said: "This is a significant breakthrough for loudspeaker manufacturers. By having actual data to rely on, they will be able to better understand how different designs impact the loudspeaker's directionality, and design out the dead spots which could limit the quality of the loudspeaker."

"The main applications are likely to be for high-end in-home loudspeaker manufacturers who want their products to deliver the perfect surround sound experience, and outdoor loudspeaker manufacturers who want to eliminate the noticeable spatial changes in levels experienced at music festivals and other live events."

"We're now looking to conduct further studies, scanning larger areas with higher definition, to get a better picture of how sound is propagating away from these loudspeakers."

The measurement technique should ideally be performed in conditions that minimise sound reflection, such as NPL's hemi-anechoic chamber. However measurements can also be carried out outdoors given the natural hemi-anechoic nature of fields.

See an explanation and example scan here:
http://www.youtube.com/watch?v=VRq1vc00R7s

The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

Joe Meaney | EurekAlert!
Further information:
http://www.npl.co.uk/acoustics

Further reports about: NPL Seeing measurement medical treatment quality of life sound quality sound wave

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>