Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Some potentially habitable planets began as gaseous, Neptune-like worlds


Two phenomena known to inhibit the potential habitability of planets -- tidal forces and vigorous stellar activity -- might instead help chances for life on certain planets orbiting low-mass stars, University of Washington astronomers have found.

In a paper published this month in the journal Astrobiology, UW doctoral student Rodrigo Luger and co-author Rory Barnes, research assistant professor, say the two forces could combine to transform uninhabitable "mini-Neptunes" -- big planets in outer orbits with solid cores and thick hydrogen atmospheres -- into closer-in, gas-free, potentially habitable worlds.

Most of the stars in our galaxy are low-mass stars, also called M dwarfs. Smaller and dimmer than the sun, with close-in habitable zones, they make good targets for finding and studying potentially habitable planets. Astronomers expect to find many Earthlike and "super-Earth" planets in the habitable zones of these stars in coming years, so it's important to know if they might indeed support life.

Super-Earths are planets greater in mass than our own yet smaller than gas giants such as Neptune and Uranus. The habitable zone is that swath of space around a star that might allow liquid water on an orbiting rocky planet's surface, perhaps giving life a chance.

"There are many processes that are negligible on Earth but can affect the habitability of M dwarf planets," Luger said. "Two important ones are strong tidal effects and vigorous stellar activity."

A tidal force is a star's gravitational tug on an orbiting planet, and is stronger on the near side of the planet, facing the host star, than on the far side, since gravity weakens with distance. This pulling can stretch a world into an ellipsoidal or egglike shape as well as possibly causing it to migrate closer to its star.

"This is the reason we have ocean tides on Earth, as tidal forces from both the moon and the sun can tug on the oceans, creating a bulge that we experience as a high tide," Luger said. "Luckily, on Earth it's really only the water in the oceans that gets distorted, and only by a few feet. But close-in planets, like those in the habitable zones of M dwarfs, experience much stronger tidal forces."

This stretching causes friction in a planet's interior that gives off huge amounts of energy. This can drive surface volcanism and in some cases even heat the planet into a runaway greenhouse state, boiling away its oceans, and all chance of habitability.

Vigorous stellar activity also can destroy any chance for life on planets orbiting low-mass stars. M dwarfs are very bright when young and emit lots of high-energy X-rays and ultraviolet radiation that can heat a planet's upper atmosphere, spawning strong winds that can erode the atmosphere away entirely. In a recent paper, Luger and Barnes showed that a planet's entire surface water can be lost due to such stellar activity during the first few hundred million years following its formation.

"But things aren't necessarily as grim as they may sound," Luger said. Using computer models, the co-authors found that tidal forces and atmospheric escape can sometimes shape planets that start out as mini-Neptunes into gas-free, potentially habitable worlds.

How does this transformation happen?

Mini-Neptunes typically form far from their host star, with ice molecules joining with hydrogen and helium gases in great quantity to form icy/rocky cores surrounded by massive gaseous atmospheres.

"They are initially freezing cold, inhospitable worlds," Luger said. "But planets need not always remain in place. Alongside other processes, tidal forces can induce inward planet migration." This process can bring mini-Neptunes into their host star's habitable zone, where they are exposed to much higher levels of X-ray and ultraviolet radiation.

This can in turn lead to rapid loss of the atmospheric gases to space, sometimes leaving behind a hydrogen-free, rocky world smack dab in the habitable zone. The co-authors call such planets "habitable evaporated cores."

"Such a planet is likely to have abundant surface water, since its core is rich in water ice," Luger said. "Once in the habitable zone, this ice can melt and form oceans," perhaps leading to life.

Barnes and Luger note that many other conditions would have to be met for such planets to be habitable. One is the development of an atmosphere right for creating and recycling nutrients globally.

Another is simple timing. If hydrogen and helium loss is too slow while a planet is forming, a gaseous envelope would prevail and a rocky, terrestrial world may not form. If the world loses hydrogen too quickly, a runaway greenhouse state could result, with all water lost to space.

"The bottom line is that this process -- the transformation of a mini-Neptune into an Earthlike world -- could be a pathway to the formation of habitable worlds around M dwarf stars," Luger said.

Will they truly be habitable? That remains for future research to learn, Luger said.

"Either way, these evaporated cores are probably lurking out there in the habitable zones of these stars, and many may be discovered in the coming years."

Luger is lead author of the paper, with Barnes and Victoria Meadows his UW co-authors. Other co-authors are E. Lopez and Jonathan Fortney of the University of California, Santa Cruz, and Brian Jackson of Boise State University.

The research was done through the Virtual Planetary Laboratory, a UW-based interdisciplinary research group, and funded through the NASA Astrobiology Institute under Cooperative Agreement Number NNA13AA93A .

This release is based on an essay by Luger. View a poster for the research. For more information, contact Luger at 206-543-6276 or; or Barnes at 206-543-8979 or

Media Contact

Peter Kelley


Peter Kelley | EurekAlert!

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>