Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some potentially habitable planets began as gaseous, Neptune-like worlds

29.01.2015

Two phenomena known to inhibit the potential habitability of planets -- tidal forces and vigorous stellar activity -- might instead help chances for life on certain planets orbiting low-mass stars, University of Washington astronomers have found.

In a paper published this month in the journal Astrobiology, UW doctoral student Rodrigo Luger and co-author Rory Barnes, research assistant professor, say the two forces could combine to transform uninhabitable "mini-Neptunes" -- big planets in outer orbits with solid cores and thick hydrogen atmospheres -- into closer-in, gas-free, potentially habitable worlds.

Most of the stars in our galaxy are low-mass stars, also called M dwarfs. Smaller and dimmer than the sun, with close-in habitable zones, they make good targets for finding and studying potentially habitable planets. Astronomers expect to find many Earthlike and "super-Earth" planets in the habitable zones of these stars in coming years, so it's important to know if they might indeed support life.

Super-Earths are planets greater in mass than our own yet smaller than gas giants such as Neptune and Uranus. The habitable zone is that swath of space around a star that might allow liquid water on an orbiting rocky planet's surface, perhaps giving life a chance.

"There are many processes that are negligible on Earth but can affect the habitability of M dwarf planets," Luger said. "Two important ones are strong tidal effects and vigorous stellar activity."

A tidal force is a star's gravitational tug on an orbiting planet, and is stronger on the near side of the planet, facing the host star, than on the far side, since gravity weakens with distance. This pulling can stretch a world into an ellipsoidal or egglike shape as well as possibly causing it to migrate closer to its star.

"This is the reason we have ocean tides on Earth, as tidal forces from both the moon and the sun can tug on the oceans, creating a bulge that we experience as a high tide," Luger said. "Luckily, on Earth it's really only the water in the oceans that gets distorted, and only by a few feet. But close-in planets, like those in the habitable zones of M dwarfs, experience much stronger tidal forces."

This stretching causes friction in a planet's interior that gives off huge amounts of energy. This can drive surface volcanism and in some cases even heat the planet into a runaway greenhouse state, boiling away its oceans, and all chance of habitability.

Vigorous stellar activity also can destroy any chance for life on planets orbiting low-mass stars. M dwarfs are very bright when young and emit lots of high-energy X-rays and ultraviolet radiation that can heat a planet's upper atmosphere, spawning strong winds that can erode the atmosphere away entirely. In a recent paper, Luger and Barnes showed that a planet's entire surface water can be lost due to such stellar activity during the first few hundred million years following its formation.

"But things aren't necessarily as grim as they may sound," Luger said. Using computer models, the co-authors found that tidal forces and atmospheric escape can sometimes shape planets that start out as mini-Neptunes into gas-free, potentially habitable worlds.

How does this transformation happen?

Mini-Neptunes typically form far from their host star, with ice molecules joining with hydrogen and helium gases in great quantity to form icy/rocky cores surrounded by massive gaseous atmospheres.

"They are initially freezing cold, inhospitable worlds," Luger said. "But planets need not always remain in place. Alongside other processes, tidal forces can induce inward planet migration." This process can bring mini-Neptunes into their host star's habitable zone, where they are exposed to much higher levels of X-ray and ultraviolet radiation.

This can in turn lead to rapid loss of the atmospheric gases to space, sometimes leaving behind a hydrogen-free, rocky world smack dab in the habitable zone. The co-authors call such planets "habitable evaporated cores."

"Such a planet is likely to have abundant surface water, since its core is rich in water ice," Luger said. "Once in the habitable zone, this ice can melt and form oceans," perhaps leading to life.

Barnes and Luger note that many other conditions would have to be met for such planets to be habitable. One is the development of an atmosphere right for creating and recycling nutrients globally.

Another is simple timing. If hydrogen and helium loss is too slow while a planet is forming, a gaseous envelope would prevail and a rocky, terrestrial world may not form. If the world loses hydrogen too quickly, a runaway greenhouse state could result, with all water lost to space.

"The bottom line is that this process -- the transformation of a mini-Neptune into an Earthlike world -- could be a pathway to the formation of habitable worlds around M dwarf stars," Luger said.

Will they truly be habitable? That remains for future research to learn, Luger said.

"Either way, these evaporated cores are probably lurking out there in the habitable zones of these stars, and many may be discovered in the coming years."

Luger is lead author of the paper, with Barnes and Victoria Meadows his UW co-authors. Other co-authors are E. Lopez and Jonathan Fortney of the University of California, Santa Cruz, and Brian Jackson of Boise State University.

The research was done through the Virtual Planetary Laboratory, a UW-based interdisciplinary research group, and funded through the NASA Astrobiology Institute under Cooperative Agreement Number NNA13AA93A .

This release is based on an essay by Luger. View a poster for the research. For more information, contact Luger at 206-543-6276 or rodluger@uw.edu; or Barnes at 206-543-8979 or rory@astro.washington.edu.

Media Contact

Peter Kelley
kellep@uw.edu
206-543-2580

 @UW

http://www.uwnews.org 

Peter Kelley | EurekAlert!

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>