Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the Riddle of Neutron Stars

10.03.2015

It has not yet been possible to measure the gravitational waves predicted by Einstein's theory of general relativity. They are so weak that they get lost in the noise of the measurements. But thanks to the latest simulations of the merging of binary neutron star systems, the structure of the sought-after signals is now known. As a team of German and Japanese theoretical astrophysicists reports in the Editor’s choice of the current edition of the scientific journal "Physical Review D", gravitational waves have a characteristic spectrum that is similar to the spectral lines of atoms.

Gravitational waves are generated when masses accelerate. The first indirect evidence for their existence was detected in 1974 when the binary pulsar PSR B1913+16 was discovered in the constellation Aquila.


Four snapshots from the merging of two neutron stars. Convergence to merger takes only a few milliseconds, during which immense masses are accelerated. The signals of the theoretically generated gravitational waves have now been calculated in simulations.

The two rapidly rotating neutron stars are drifting towards each other in a spiral shape, which is why, the astrophysicists explain, they are losing energy and emitting gravitational waves. Russell A. Hulse and Joseph H. Taylor received the 1993 Nobel Prize in Physics for this discovery.

In the meantime, there are now several large-scale experiments for detecting gravitational waves: the American LIGO experiment, the European Virgo experiment, and the Japanese KAGRA detector.Experts estimate that signals of gravitational waves from merging binary neutron star systems will be detected within the next five years.

"These signals are not easy to detect, because they have an extremely small amplitude." But despite these difficult conditions, it is possible to find them, if you know what to look for in advance," explained Professor Luciano Rezzolla from the Institute for Theoretical Physics at Goethe University.

Together with a Japanese colleague from Osaka University, he has studied a number of binary neutron star systems with the help of the latest simulation techniques and has discovered that the merging of the stars generates characteristic gravitational wave spectra. "These spectra correspond, at least logically, to the electromagnetic spectral lines emitted by atoms or molecules. From these we can derive information on the characteristics of the stars," explains Rezzolla.

As the astrophysicists show in two publications with related content in "Physical Review Letters" (published in November 2014) and in the current edition of "Physical Review D," the gravitational waves spectrum is like a fingerprint for the two stars. If scientists learn how to interpret these spectra, they will know what the neutron stars are made of and will be able to determine what is their equation of state, which is so far unknown.

Equations of state describe the thermodynamic properties of systems as a function of variables, such as pressure, temperature, volume, or particle number. To this Rezzolla adds: "This is a very exciting possibility, because then we would be able to solve a riddle that has remained unsolved for 40 years: What are neutron stars made of and what is their stellar structure?"

"If the signal is strong and thus the fingerprint is very clear, even a single measurement would be sufficient," Rezzolla predicts. "The prospects of solving the riddle of neutron stars have never been this good. The gravitational waves that we hope to detect in a few years are already on their way from the farthest reaches of the universe."

Publication:
K. Takami, L. Rezzolla, and L. Baiotti, Constraining the Equation of State of Neutron Stars from Binary Merger, Phys. Rev. Lett. 113, 091104 (2014).
DOI: 10.1103/PhysRevLett.113.091104

K. Takami, L. Rezzolla, and L. Baiotti, Spectral properties of the post-merger gravitational-wave signal from binary neutron stars, Phys. Rev. D. 113, 091104 (2015), 2. März 2015.

Information: Prof. Luciano Rezzolla, Institute for Theoretical Physics, Campus Riedberg, Tel.: (069) 798-47871, rezzolla@th.physik.uni-frankfurt.de.

Goethe University is a research-oriented university in the European financial centre Frankfurt Founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens, it is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main

Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>