Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the Riddle of Neutron Stars

10.03.2015

It has not yet been possible to measure the gravitational waves predicted by Einstein's theory of general relativity. They are so weak that they get lost in the noise of the measurements. But thanks to the latest simulations of the merging of binary neutron star systems, the structure of the sought-after signals is now known. As a team of German and Japanese theoretical astrophysicists reports in the Editor’s choice of the current edition of the scientific journal "Physical Review D", gravitational waves have a characteristic spectrum that is similar to the spectral lines of atoms.

Gravitational waves are generated when masses accelerate. The first indirect evidence for their existence was detected in 1974 when the binary pulsar PSR B1913+16 was discovered in the constellation Aquila.


Four snapshots from the merging of two neutron stars. Convergence to merger takes only a few milliseconds, during which immense masses are accelerated. The signals of the theoretically generated gravitational waves have now been calculated in simulations.

The two rapidly rotating neutron stars are drifting towards each other in a spiral shape, which is why, the astrophysicists explain, they are losing energy and emitting gravitational waves. Russell A. Hulse and Joseph H. Taylor received the 1993 Nobel Prize in Physics for this discovery.

In the meantime, there are now several large-scale experiments for detecting gravitational waves: the American LIGO experiment, the European Virgo experiment, and the Japanese KAGRA detector.Experts estimate that signals of gravitational waves from merging binary neutron star systems will be detected within the next five years.

"These signals are not easy to detect, because they have an extremely small amplitude." But despite these difficult conditions, it is possible to find them, if you know what to look for in advance," explained Professor Luciano Rezzolla from the Institute for Theoretical Physics at Goethe University.

Together with a Japanese colleague from Osaka University, he has studied a number of binary neutron star systems with the help of the latest simulation techniques and has discovered that the merging of the stars generates characteristic gravitational wave spectra. "These spectra correspond, at least logically, to the electromagnetic spectral lines emitted by atoms or molecules. From these we can derive information on the characteristics of the stars," explains Rezzolla.

As the astrophysicists show in two publications with related content in "Physical Review Letters" (published in November 2014) and in the current edition of "Physical Review D," the gravitational waves spectrum is like a fingerprint for the two stars. If scientists learn how to interpret these spectra, they will know what the neutron stars are made of and will be able to determine what is their equation of state, which is so far unknown.

Equations of state describe the thermodynamic properties of systems as a function of variables, such as pressure, temperature, volume, or particle number. To this Rezzolla adds: "This is a very exciting possibility, because then we would be able to solve a riddle that has remained unsolved for 40 years: What are neutron stars made of and what is their stellar structure?"

"If the signal is strong and thus the fingerprint is very clear, even a single measurement would be sufficient," Rezzolla predicts. "The prospects of solving the riddle of neutron stars have never been this good. The gravitational waves that we hope to detect in a few years are already on their way from the farthest reaches of the universe."

Publication:
K. Takami, L. Rezzolla, and L. Baiotti, Constraining the Equation of State of Neutron Stars from Binary Merger, Phys. Rev. Lett. 113, 091104 (2014).
DOI: 10.1103/PhysRevLett.113.091104

K. Takami, L. Rezzolla, and L. Baiotti, Spectral properties of the post-merger gravitational-wave signal from binary neutron stars, Phys. Rev. D. 113, 091104 (2015), 2. März 2015.

Information: Prof. Luciano Rezzolla, Institute for Theoretical Physics, Campus Riedberg, Tel.: (069) 798-47871, rezzolla@th.physik.uni-frankfurt.de.

Goethe University is a research-oriented university in the European financial centre Frankfurt Founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens, it is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main

Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>