Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving a Physics Mystery: Those 'Solitons' Are Really Vortex Rings

06.02.2014
The same physics that gives tornadoes their ferocious stability lies at the heart of new University of Washington research, and could lead to a better understanding of nuclear dynamics in studying fission, superconductors and the workings of neutron stars.

The work seeks to clarify what Massachusetts Institute of Technology researchers witnessed when in 2013 they named a mysterious phenomenon — an unusual long-lived wave traveling much more slowly than expected through a gas of cold atoms. They called this wave a "heavy soliton" and claimed it defied theoretical description.

But in one of the largest supercomputing calculations ever performed, UW physicists Aurel Bulgac and Michael Forbes and co-authors have found this to be a case of mistaken identity: The heavy solitons observed in the earlier experiment are likely vortex rings – a sort of quantum equivalent of smoke rings.

"The experiment interpretation did not conform with theory expectations," said Bulgac. "We had to figure out what was really happening there. It was not obvious it was one thing or another — thus it took a bit of police work."

A vortex ring is a doughnut-shaped phenomenon where fluids or gases knot and spin in a closed, usually circular loop. The physics of vortex rings is the same as that which gives stability to tornadoes, volcanic eruptions and mushroom clouds. (Dolphins actually create their own vortex rings in water for entertainment.)

"Using state-of-the-art computing techniques, we demonstrated with our simulation that virtually all aspects of the MIT results can be explained by vortex rings" said Forbes, an UW affiliate professor who in January became an assistant professor of physics at Washington State University.

He said the simulations they used "could revolutionize how we solve certain physics problems in the future," such as studying nuclear reactions without having to perform nuclear tests. As for neutron stars, he said the work also could lead to a better understanding of "glitches," or rapid increases in such a star's pulsation frequency, as this may be due to vortex interactions inside the star.

"We are now at a cusp where our computational capabilities are becoming sufficient to shed light on this longstanding problem. This is one of our current directions of research — directly applying what we have learned from the vortex rings," Forbes said.

The computing work for the research — one of the largest direct numerical simulations ever — was performed on the supercomputer Titan, at the Oak Ridge Leadership Computing Facility in Tennessee, the nation's most powerful computer for open science. Work was also performed on the UW's Hyak high-performance computer cluster.

Bulgac and Forbes published their findings in a January issue of Physical Review Letters. Co-authors are Kenneth Roche of the Pacific Northwest National Laboratory and the UW; Gabriel Wlaz³owski of the Warsaw University of Technology and the UW; and Michelle Kelley of the University of Illinois at Urbana-Champaign.

The research was funded by grants number DE-FG02-97ER41014 and
DE-FG02-00ER41132 from the U.S. Department of Energy as well as support from the U.S. and Polish National Science Foundations.

For more information, contact Bulgac at 206-685-2988, or bulgac@uw.edu; or Forbes at 509-335-6125 or mforbes@wsu.edu.

Peter Kelley | Newswise
Further information:
http://www.uw.edu

More articles from Physics and Astronomy:

nachricht The Exception and its Rules
25.07.2016 | Technische Universität Wien

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>