Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solving a 30-year-old problem in massive star formation

An international group of astrophysicists has found evidence strongly supporting a solution to a long-standing puzzle about the birth of some of the most massive stars in the universe.

Young massive stars, which have more than 10 times the mass of the Sun, shine brightly in the ultraviolet, heating the gas around them, and it has long been a mystery why the hot gas doesn't explode outwards.

This false-color Very Large Array image of the ionized gas in the star forming region Sgr B2 Main was used to detect small but significant changes in brightness of several of the sources. The spots and filaments in this image are regions of ionized gas around massive stars. The changes in brightness detected support a model that could solve a 30-year-old question in high mass star formation.

Credit: NRAO/Agnes Scott College

Now, observations made by a team of researchers using the Jansky Very Large Array (VLA), a radio astronomy observatory in New Mexico, have confirmed predications that as the gas cloud collapses, it forms dense filamentary structures that absorb the star's ultraviolet radiation when it passes through them. As a result, the surrounding heated nebula flickers like a candle.

The findings, made by scientists working at Agnes Scott College, Universität Zürich, the American Museum of Natural History, Harvard-Smithsonian Center for Astrophysics, National Radio Astronomy Observatory, European Southern Observatory, and Universität Heidelberg, were published recently in The Astrophysical Journal Letters.

"Massive stars dominate the lives of their host galaxies through their ionizing radiation and supernova explosions," said Mordecai-Mark Mac Low, a curator in the American Museum of Natural History's Department of Astrophysics and an author on the paper. "All the elements heavier than iron were formed in the supernova explosions occurring at the ends of their lives, so without them, life on Earth would be very different."

Stars form when huge clouds of gas collapse. Once the density and temperature are high enough, hydrogen fuses into helium, and the star starts shining. The most massive stars, though, begin to shine while the clouds are still collapsing. Their ultraviolet light ionizes the surrounding gas, forming a nebula with a temperature of 10,000 degrees Celsius. Simple models suggest that at this stage, the gas around massive stars will quickly expand. But observations from the VLA radio observatory show something different: a large number of regions of ionized hydrogen (so-called HII regions) that are very small.

"In the old theoretical model, a high-mass star forms and the HII region lights up and begins to expand. Everything was neat and tidy," said lead author Chris De Pree, a professor of astronomy and director of the Bradley Observatory at Agnes Scott College. "But the group of theorists I am working with were running numerical models that showed accretion was continuing during star formation, and that material was continuing to fall in toward the star after the HII region had formed."

Recent modeling has shown that this is because the interstellar gas around massive stars does not fall evenly onto the star but instead forms filamentary concentrations because the amount of gas is so great that gravity causes it to collapse locally. The local areas of collapse form spiral filaments. When the massive star passes through the filaments, they absorb its ultraviolet radiation, shielding the surrounding gas. This shielding explains not only how the gas can continue falling in, but why the ionized nebulae observed with the VLA are so small: the nebulae shrink when they are no longer ionized, so that over thousands of years, they appear to flicker like a candle.

"These transitions from rarefied to dense gas and back again occur quickly compared to most astronomical events," said Dr. Mac Low, a curator in the Museum's Department of Astrophysics. "We predicted that measurable changes could occur over times as short as a few decades."

The new study tested this theory with a 23-year-long experiment. The researchers used VLA observations of the Sagittarius B2 region made in 1989 and again in 2012. This massive star-forming region located near the Galactic center contains many small regions of ionized gas around high-mass stars, providing a large number of candidates for flickering. During this time, four of the HII regions indeed significantly changed in brightness.

"The long term trend is still the same, that HII regions expand with time," De Pree said. "But in detail, they get brighter or get fainter and then recover. Careful measurements over time can observe this more detailed process."

The publication can be viewed at:

Kendra Snyder | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>