Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solution to beading-saliva mystery has practical purposes

10.06.2010
Researchers have discovered precisely why strands of some fluids containing long molecules called polymers form beads when stretched, findings that could be used to improve industrial processes and for administering drugs in "personalized medicine."

"Any kindergartner is familiar with this beading phenomenon, which you can demonstrate by stretching a glob of saliva between your thumb and forefinger," said Osman Basaran, Purdue's Burton and Kathryn Gedge Professor of Chemical Engineering.

Before the strand of spittle breaks, a string of beads is formed.

"The question is, why does this beading take place only in some fluids containing polymers but not others?" Basaran said.

Now engineers and scientists at Purdue, the Massachusetts Institute of Technology and Rice University have solved the riddle in work led by Purdue postdoctoral researcher Pradeep Bhat. The researchers have determined the mechanism behind the beading and created a computational model to simulate the phenomenon.

Knowing the answer to this question might enable researchers to design systems that precisely control bead formation, leading to improvements in various technologies such as inkjet printing. The information also might be used in a system that precisely dispenses the correct dose of medications for individual patients based on simple blood tests.

Findings are detailed in a paper published online this week in the journal Nature Physics. The paper was written by Bhat; Purdue graduate student Santosh Appathurai; Michael T. Harris, a Purdue professor of chemical engineering; Matteo Pasquali, a professor in chemical and biomolecular engineering at Rice; Gareth H. McKinley, a professor of mechanical engineering at MIT; and Basaran.

Saliva and other complex "viscoelastic" fluids like shaving cream and shampoo contain long chains of molecules called polymers. In the case of saliva, the polymers are proteins known as mucopolysaccharides. In comparison, liquids such as water and other so-called "Newtonian" fluids do not form the beads because they lack polymers.

Conventional wisdom has held that all fluids containing polymers should form the beads, but researchers have shown that assumption to be wrong and have demonstrated why.

The researchers tested saliva and a material contained in a strip on the leading edge of disposable razors.

"You moisten the razor strip with water, which causes it to swell, press it against a finger and pull it," Basaran said. "Unlike saliva, you see strands of liquids formed but no beads."

A key factor in the beading mechanism is fluid inertia, or the tendency of a fluid to keep moving unless acted upon by an external force.

Other major elements are a fluid's viscosity; the time it takes a stretched polymer molecule to "relax," or snap back to its original shape when stretching is stopped; and the "capillary time," or how long it would take for the surface of the fluid strand to vibrate if plucked.

"It turns out that the inertia has to be large enough and the relaxation time has to be small enough to form beads," Bhat said.

The researchers discovered bead formation depends on two ratios: the viscous force compared to inertial force and the relaxation time compared to the capillary time.

Because smearing "satellite" beads form around droplets produced by an inkjet printer, learning how to control bead formation might be used to improve printing. Findings also may help to improve an industrial process called electrospinning, used to make a variety of products, and spray coating used in painting.

"The idea is that, if you are operating an inkjet printer, for example, you would be able to control these ratios to prevent the bead formation," Basaran said.

Findings may help to perfect a new type of drug-dispensing technology being developed for "personalized medicine" through an Engineering Research Center for Structured Organic Particulate Systems, funded by the National Science Foundation and made up of researchers from Purdue, Rutgers University, the New Jersey Institute of Technology and the University of Puerto Rico.

The technique involves using an inkjet-printing nozzle to deposit drops of medication onto an edible substrate, such as paper or a sugar pill. The approach might be used by patients with disorders that require precise doses of medication depending on daily blood measurements.

"Patients might be able to do this even at home," said Basaran, whose research, carried out in collaboration with Harris, is affiliated with the NSF-funded center. "The patient will perform a routine sort of blood analysis, similar to blood-glucose monitoring, and then use this device to 'print' the exact quantity of drug based on the blood measurement, which would be done every day."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Osman Basaran, (765) 494-4061, obasaran@purdue.edu
Pradeep Bhat, pbhat@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>