Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solution to beading-saliva mystery has practical purposes

10.06.2010
Researchers have discovered precisely why strands of some fluids containing long molecules called polymers form beads when stretched, findings that could be used to improve industrial processes and for administering drugs in "personalized medicine."

"Any kindergartner is familiar with this beading phenomenon, which you can demonstrate by stretching a glob of saliva between your thumb and forefinger," said Osman Basaran, Purdue's Burton and Kathryn Gedge Professor of Chemical Engineering.

Before the strand of spittle breaks, a string of beads is formed.

"The question is, why does this beading take place only in some fluids containing polymers but not others?" Basaran said.

Now engineers and scientists at Purdue, the Massachusetts Institute of Technology and Rice University have solved the riddle in work led by Purdue postdoctoral researcher Pradeep Bhat. The researchers have determined the mechanism behind the beading and created a computational model to simulate the phenomenon.

Knowing the answer to this question might enable researchers to design systems that precisely control bead formation, leading to improvements in various technologies such as inkjet printing. The information also might be used in a system that precisely dispenses the correct dose of medications for individual patients based on simple blood tests.

Findings are detailed in a paper published online this week in the journal Nature Physics. The paper was written by Bhat; Purdue graduate student Santosh Appathurai; Michael T. Harris, a Purdue professor of chemical engineering; Matteo Pasquali, a professor in chemical and biomolecular engineering at Rice; Gareth H. McKinley, a professor of mechanical engineering at MIT; and Basaran.

Saliva and other complex "viscoelastic" fluids like shaving cream and shampoo contain long chains of molecules called polymers. In the case of saliva, the polymers are proteins known as mucopolysaccharides. In comparison, liquids such as water and other so-called "Newtonian" fluids do not form the beads because they lack polymers.

Conventional wisdom has held that all fluids containing polymers should form the beads, but researchers have shown that assumption to be wrong and have demonstrated why.

The researchers tested saliva and a material contained in a strip on the leading edge of disposable razors.

"You moisten the razor strip with water, which causes it to swell, press it against a finger and pull it," Basaran said. "Unlike saliva, you see strands of liquids formed but no beads."

A key factor in the beading mechanism is fluid inertia, or the tendency of a fluid to keep moving unless acted upon by an external force.

Other major elements are a fluid's viscosity; the time it takes a stretched polymer molecule to "relax," or snap back to its original shape when stretching is stopped; and the "capillary time," or how long it would take for the surface of the fluid strand to vibrate if plucked.

"It turns out that the inertia has to be large enough and the relaxation time has to be small enough to form beads," Bhat said.

The researchers discovered bead formation depends on two ratios: the viscous force compared to inertial force and the relaxation time compared to the capillary time.

Because smearing "satellite" beads form around droplets produced by an inkjet printer, learning how to control bead formation might be used to improve printing. Findings also may help to improve an industrial process called electrospinning, used to make a variety of products, and spray coating used in painting.

"The idea is that, if you are operating an inkjet printer, for example, you would be able to control these ratios to prevent the bead formation," Basaran said.

Findings may help to perfect a new type of drug-dispensing technology being developed for "personalized medicine" through an Engineering Research Center for Structured Organic Particulate Systems, funded by the National Science Foundation and made up of researchers from Purdue, Rutgers University, the New Jersey Institute of Technology and the University of Puerto Rico.

The technique involves using an inkjet-printing nozzle to deposit drops of medication onto an edible substrate, such as paper or a sugar pill. The approach might be used by patients with disorders that require precise doses of medication depending on daily blood measurements.

"Patients might be able to do this even at home," said Basaran, whose research, carried out in collaboration with Harris, is affiliated with the NSF-funded center. "The patient will perform a routine sort of blood analysis, similar to blood-glucose monitoring, and then use this device to 'print' the exact quantity of drug based on the blood measurement, which would be done every day."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Osman Basaran, (765) 494-4061, obasaran@purdue.edu
Pradeep Bhat, pbhat@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>