Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid-state controllable light filter may protect preterm infants from disturbing light

07.05.2013
Preterm infants appear to mature better if they are shielded from most wavelengths of visible light, from violet to orange.

But it has been a challenge to develop a controllable light filter for preterm incubators that can switch between blocking out all light--for sleeping--and all but red light to allows medical staff and parents to check up on the kids when they're awake.

Now, in a paper accepted for publication in Applied Physics Letters, a journal of the American Institute of Physics, researchers describe a proof-of-concept mirror that switches between reflective and red-transparent states when a small voltage is applied.

The research team had previously identified a magnesium-iridium reflective thin film that transforms into a red-transparent state when it incorporates protons. Providing those protons in a way that is practical for preterm incubators, however, was the challenge. The typical method--using dilute hydrogen gas--is unacceptable in a hospital setting.

So the team created a stack of thin films that includes both an ion storage layer and the magnesium-iridium layer: a voltage drives protons from the ion storage layer to the magnesium-iridium layer, transforming it into its red-transparent state. Reversing the voltage transforms it back into a reflective mirror.

The researchers report that the device still allows some undesirable light wavelengths through, but a force of just 5 V changes the device's state in as little as 10 seconds. The researchers are now looking at other materials to improve color filtering and switching speed.

Article: "Controllable light filters using an all-solid-state switchable mirror with a Mg-Ir thin film for preterm infant incubators," is published in Applied Physics Letters.

Link: http://apl.aip.org/resource/1/applab/v102/i16/p161913_s1

Authors: Kazuki Tajima(1), Mika Shimoike(1), Heng Li(2), Masumi Inagaki(2), Hitomi Izumi(2), Misaki Akiyama(2), Yukiko Matsushima(2), Hidenobu Ohta(2)

(1) National Institute of Advanced Industrial Science and Technology (2) National Center of Neurology and Psychiatry

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>